JOASISOPEN

Darwin Information Typing Architecture
(DITA) Version 2.0

Working Draft 38
26 August 2024

This stage:
https://docs.oasis-open.org/dita/dita/v2.0/wd01/dita-v2.0-wd01.html (Authoritative version)
https://docs.oasis-open.org/dita/dita/v2.0/wd01/dita-v2.0-wd01.pdf

Previous stage:
N/A

Latest stage:
https://docs.oasis-open.org/dita/dita/v2.0/dita-v2.0.html (Authoritative version)
https://docs.oasis-open.org/dita/dita/v2.0/dita-v2.0.pdf

Technical Committee:
OASIS Darwin Information Typing Architecture (DITA) TC

Chair:
Kristen James Eberlein (kris@eberleinconsulting.com), Eberlein Consulting LLC

Editors:
Kristen James Eberlein (kris@eberleinconsulting.com), Eberlein Consulting LLC
Robert D. Anderson (robert.dan.anderson@oracle.com), Oracle

Additional artifacts:
This prose specification is one component of a work product that also includes:

« https://docs.oasis-open.org/dita/dita/v2.0/wd01/dita-v2.0-wd01-dita.zip (DITA source)
« https://docs.oasis-open.org/dita/dita/v2.0/wd01/dita-v2.0-wd01-grammars.zip (grammar files)

Related work:
This specification replaces or supersedes Darwin Information Typing Architecture (DITA) Version 1.3, a
multi-part OASIS that includes:

» Darwin Information Typing Architecture (DITA) Version 1.3 Part 0: Overview. Latest version: https://
docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part0-overview.html

» Darwin Information Typing Architecture (DITA) Version 1.3 Part 1: Base Edition. Latest version: https://
docs.oasis-open.org/dita/dita/vl.3/dita-v1.3-partl-base.html

» Darwin Information Typing Architecture (DITA) Version 1.3 Part 2: Technical Content Edition. Latest
version: https://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part2-tech-content.html

» Darwin Information Typing Architecture (DITA) Version 1.3 Part 3: All-Inclusive Edition. Latest version:
https://docs.oasis-open.org/dita/dita/vl.3/dita-v1.3-part3-all-inclusive.html

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 1 of 471

https://docs.oasis-open.org/dita/dita/v2.0/wd01/dita-v2.0-wd01.html
https://docs.oasis-open.org/dita/dita/v2.0/wd01/dita-v2.0-wd01.pdf
https://docs.oasis-open.org/dita/dita/v2.0/dita-v2.0.html
https://docs.oasis-open.org/dita/dita/v2.0/dita-v2.0.pdf
https://www.oasis-open.org/committees/dita/
mailto:kris@eberleinconsulting.com
http://eberleinconsulting.com/
mailto:kris@eberleinconsulting.com
http://eberleinconsulting.com/
mailto:robert.dan.anderson@oracle.com
http://www.oracle.com
https://docs.oasis-open.org/dita/dita/v2.0/wd01/dita-v2.0-wd01-dita.zip
https://docs.oasis-open.org/dita/dita/v2.0/wd01/dita-v2.0-wd01-grammars.zip
https://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part0-overview.html
https://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part0-overview.html
https://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part1-base.html
https://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part1-base.html
https://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part2-tech-content.html
https://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part3-all-inclusive.html

Abstract:

The Darwin Information Typing Architecture (DITA) 2.0 specification defines both a) a set of document
types for authoring and organizing topic-oriented information; and b) a set of mechanisms for combining,
extending, and constraining document types.

Status:

This document was last revised or approved by the OASIS Darwin Information Typing Architecture (DITA)
TC on the above date. The level of approval is also listed above. Check the “Latest stage” location noted
above for possible later revisions of this document. Any other numbered Versions and other technical
work produced by the Technical Committee (TC) are listed at https://www.0asis-open.org/committees/
tc_home.php?wg_abbrev=dita#technical.

TC members should send comments on this specification to the TC’s email list. Others should send
comments to the TC’s public comment list, after subscribing to it by following the instructions at the “Send
A Comment” button on the TC’s web page at https://www.0asis-open.org/committees/comments/
index.php?wg_abbrev=dita.

This specification is provided under the RF on Limited Terms Mode of the OASIS IPR Policy, the mode
chosen when the Technical Committee was established. For information on whether any patents have
been disclosed that may be essential to implementing this specification, and any offers of patent licensing
terms, please refer to the Intellectual Property Rights section of the TC's web page (https://www.oasis-
open.org/committees/dita/ipr.php).

Note that any machine-readable content (Computer Language Definitions) declared Normative for this
Work Product is provided in separate plain text files. In the event of a discrepancy between any such plain
text file and display content in the Work Product's prose narrative document(s), the content in the
separate plain text file prevails.

Citation format:
When referencing this specification, the following citation format should be used:

[DITA-v2.0]

Darwin Information Typing Architecture (DITA) Version 2.0. Edited by Kristen James Eberlein and Robert
D. Anderson. 26 August 2024. Working Draft 38. https://docs.oasis-open.org/dita/dita/v2.0/wd01/dita-v2.0-
wd01.html. Latest stage: https://docs.oasis-open.org/dita/dita/v2.0/dita-v2.0.html.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 2 of 471

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dita#technical
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dita#technical
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=dita
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=dita
https://www.oasis-open.org/policies-guidelines/ipr#RF-on-Limited-Mode
https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/committees/dita/ipr.php
https://www.oasis-open.org/committees/dita/ipr.php
https://www.oasis-open.org/policies-guidelines/tc-process-2017-05-26#wpComponentsCompLang
https://docs.oasis-open.org/dita/dita/v2.0/wd01/dita-v2.0-wd01.html
https://docs.oasis-open.org/dita/dita/v2.0/wd01/dita-v2.0-wd01.html
https://docs.oasis-open.org/dita/dita/v2.0/dita-v2.0.html

Notices

Copyright © OASIS Open 2022. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be
followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

As stated in the OASIS IPR Policy, the following three paragraphs in brackets apply to OASIS Standards
Final Deliverable documents (Committee Specification, OASIS Standards, or Approved Errata).

[OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Standards Final Deliverable, to notify OASIS
TC Administrator and provide an indication of its willingness to grant patent licenses to such patent claims
in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this
specification.]

[OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this OASIS Standards Final
Deliverable by a patent holder that is not willing to provide a license to such patent claims in a manner
consistent with the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS
may include such claims on its website, but disclaims any obligation to do so.]

[OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this OASIS
Standards Final Deliverable or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights. Information on
OASIS' procedures with respect to rights in any document or deliverable produced by an OASIS
Technical Committee can be found on the OASIS website. Copies of claims of rights made available for
publication and any assurances of licenses to be made available, or the result of an attempt made to
obtain a general license or permission for the use of such proprietary rights by implementers or users of
this OASIS Standards Final Deliverable, can be obtained from the OASIS TC Administrator. OASIS
makes no representation that any information or list of intellectual property rights will at any time be
complete, or that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 3 of 471

https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/

misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above
guidance.

https://www.oasis-open.org/policies-guidelines/trademark

Table of contents

oo [N Tt o] PO TP PP P PTP T PTPPPPP PO 11
O R =11 4T g o] (oo Y O PP PP PP P PPPPPPPPPPPPPPN 11
1.2 RETEIEINCES. ...ttt e ekt e e oottt e oo ek bt e e e e e bbbt e e e e aabbe e e e e aanbe e e e e e abrreeeeaane 11

1.2.1 NOIMALIVE FEIEIEINCES. ...ttt et e et e e e e e e b e e e e nnes 11
1.2.2 INfOrMALIVE FEIEIEINCES. ...t e e 12
1.3 Normative versions of DITA grammar fileS.......coouueiiiiiiiiiie e 14
1.4 Formatting conventions in the HTMLS5 version of the specification............c.ccocovveeiiiiiiiiieee s 14
L4 2 LINK PIEVIBWS.eeee ittt ettt ettt e et e e e ekttt e e e ekt e e e e aa b bt e e e e ek b et e e e e anb b e e e e e e nbr e e e e e annneas 14
1.4.2 NAVIGALION TINKS....ceiiiiiiiiiees ittt e e e skt e e e e s st b e e e e e s saba e e e e s anbreeeesaaes 15
1.5 About the SPECIfICALION SOUICE.ccciiiiiiiie ittt e s e b e e e e 15

2 DITA terminology, notation, and CONVENTIONS.cuiiiii it e e e e e ee e e e e e e e as 17
2.1 Normative and non-normative iNfOrMEatioN............oouuiiiiiiiiii e 17
A L] v- L1 o] o O PO PP PP PPPPTRPPPPN 17
2.3 BaSIC DITA LEIMINOIOQY. ... itteeiieiiitiiie ettt ettt e e st b e e e e bbb e e e e e st b e e e e e s anbreeeeeabbeeeeeans 17
2.4 Specialization terMINOIOGY.uueiie it e s e e e e e abb e e e e s e anbb e e e e e e nnneas 19
2.5 DITA MOUIE tEIMINOIOGY ... eteeeieiitiiiee ittt e et e e et b e e e e e st b e e e e e s anbae e e e e sbbeeeaeans 19
2.6 Linking and addressing terMINOIOgY.........cccuiiiiiiiaiiiiie ettt e e s rbre e e 20
2.7 KEY TIMMINOIOOY ... tteeteeiitiee ettt e e et e e e et e e e e s e n b et e e et et e e e e anbb e e e e e e annneas 21
2.8 MAP LEIMINOIOGY ...ttt ittt e e e e skt e e e ekt et e e e e sk b et e e e e ab bt e e e e abbe e e e e e annreeeeeannnee 21
2.9 Other tEIMINOIOGY. ... teeee ettt et e et e e e ekt e e e e e b b et e e e e aab bt e e e e abbe e e e e e aanbeeeeeanneee 21
2.10 Fil8 EXIENSIONS. ...eeeiitteeee ettt ettt e ettt e e e et e e e s aa b e et e e e e bbbt e e e e aab b et e e e e aabe e e e e e abbe e e e e s abreeeeeaae 22

S OVEIVIEW OF DITA. ettt ettt ettt e e e skt e e e sk bttt e e o bbbt e e e s aa bt e et e e e nbb et e e e anebb et e e s annnneeens 23
N = 7= L] ol ol o1 =T o £ TP PP R TPPPPPRON 23
3.2 Producing different deliverables from a Single SOUICE...........cuuiiiiiiiiiiiiiii e 24
R Bl N (o] o [ox= P PP TP PPPRPPOPPPRPP 25

3.3.1 The topic as the basic unit of INFOrMALION...........cooiiiiiiiii e 25
3.3.2 The benefits of a topic-based arChiteCture...............ooooiiiiiiii e 26
3.3.3 Disciplined, topiC-0Orented WITTING.etiiiiiiiiiee it 26
3.3.4 INfOrMEALION TYPING...tteteeeiiiieie ettt et e ekt e e s ekt e e s anbb et e e s aannr e e e e s annnreeas 27
3.3.5 TOPIC SIIUCTUIE.....ceeiiitiiee etttk e e et e e e ek bt e e e e et et e e e e st b e e e e e aabbeeeeeennees 28
R N SR o] o] (ol of0] 11 (=] o | FER PP O PP PP PPPPPN 29
G B N 1 F=T o OO PP TP P PP PUPIPRPPPPT 30
3.4.1 DefiNitioN OF DITA MEPS. ... tieieeiiiiiiee ettt e e et e e e e et b e e e e e e ab e e e e e anbre e e e e annneas 30
3.4.2 PUIPOSE OF DITA MAPS. ..cceeiiitiiteeiitiet ettt ettt e ettt e e e sttt e e s sabb e e e e s s bbb e e e e s abbeeeeesanbreeeeeaan 31
3.4.3 DITA MAP AIIDULES.eeiiiiiiiie et e e e e e s e b e e e e e nnes 31
RN Bl N L] = To £ - TP PO P PP PUPPPPPON 34
3.5.1 Metadata @IEIMENES.ciiiiiiiie ittt e e e s a e as 35
3.5.2 Metadata attriDULES.........oooiiiiiiiie et e s e 35
3.5.3 Metadata in MaPS @Nd tOPICS.uurieiiiiiiiee ittt e s b e e e e sab e e e s e aab e e e e e annnes 36
3.5.4 Window metadata for USEr @SSISTANCE.cocuuriieiiiiiie ettt 36

4 Accessibility and traNSIALION.coiuiiii e 37

.1 ACCESSIDIIITY . ..ottt e et e e e bbb e e e e b b e e e e s e eeeaaa 37
4.1.1 Handling accessibility in content and iN PrOCESSOIS.ccuiiiirrriieiiiiiieeeiriieee e aiieree e sireeee e 37

4.1.2 ACCESSIDIE COMIENT......eiiii ettt e e st e e e e st bt e e e et b e e e e e e b e e e e e annnes 38

4.1.3 ACCESSIDIE tADIES......ceiiitieii e 38

4.1.4 Examples of DITA markup for acCesSibility.............ooiiiiiiiiiii e 40

4.2 Translation and [0CAIZATION.coiiiiiiii e a7
4.2.1 The @XMIEIANG @tFIDULE.........eeiieiieeii et e e e e e e e e e r e e e e e e e e e e e e annns 47
dita-2.0-specification 26 August 2024

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 5 of 471

o N TS @ Lo [T =N | 10 | (< 50

4.2.3 The @Iranslate attriDULE..........uu it e e e et e e e e e e s s e e saa e e eaaneeaees 51

5 DITA MAP PIrOCESSING. . eettiteeeeiiiiitttteetteet e e e e e et e s aatetbe e e eettaaaaaaaaaaaanbaebeeeeeetaaaaaesaaasabbbbeeeeeataaasaesaaannbbsbaneeaeas 52
5.1 DITA Maps @nd their USAQE.ccuiii ittt ettt e e e e e e e e e e s e aanbbebeeeeaaaaeas 52
5.1.1 Imposing roles when referenCiNg @ MaP..........uueeeiiiiiiaaaiiieie e e e e e e e e e eeanes 53
5.1.2 EXAMPIES OF DITA MAPS. .. tetetiiiaeiiiaiiitett ettt e e e e ettt e e e e e e e e s s bbbbe e et e e e aaaeeesasannbbbbeeaeeaeaeas 57
5.2 Subject scheme maps and their USAQE.........eeeiiii it e e e e e 59
5.2.1 SUDJECE SChEME MAPS...cci it e e e e e e e e eeeaaaaaeeas 60
5.2.2 Defining controlled values for attribDULES.oooi i 60
5.2.3 Binding controlled values to an attribULe..............eiiiiiiiiiiiiie e 61
5.2.4 Processing controlled attribute VAlUES...........ooo i 62
5.2.5 The @subjectrefs attribDULe.ooo e 63
5.2.6 Examples of SuUDJECt SChEME MAPS.........uuiiiiiiiiiiie e 64
SRSV [T = o F= T e= W o= 1T or= Lo [T o TR PR PPP P PPPRR 69
5.3.1 Cascading of metadata attributes in @ DITA Map.........uuuiiiiiiiaiiiiieie e 69
5.3.2 Reconciling topic and map metadata elementS.cooiiii i 71
5.3.3 Map-to-map cascading DENAVIOrS.uuiiiiiiiii e 73
5.3.4 Examples of metadata CaSCadING........cooiiiiiiiiiiiiie et e e e e e e e e 74
I O 0 18] 0 (] T PR PP PPRPPPPPRI 77
5.4.1 About the @CRUNK AIIIDULE.iiiiiiii et e e et e s e e e et e s e s e e s saa e s st e araanees 77
5.4.2 Processing ChunK="COMDINE"............oi e e e e e e e e 78
5.4.3 Processing ChUNK="SPII"........oo i e e e e e e e e e 78
5.4.4 Using the @chunk attribute for Other PUFPOSES.........cooiiiiiiiiiiiiie e 78
5.4.5 Examples of the @chunk attribDULe.............oooi e 78

LS A= o (o [{11 [To PP UPPPRRTPRT 93
(ST @0 =11 € o 10| (T 93
6.2 DITA TINKING. ... eeeeeiitie ettt ettt e et e e s e st e e sk bt e e e s ekt e et e e s sb e e et e e anbne e e e s annnneeas 94
(SO R I LSl G (0] € 4T A= L1] o 10 L (=TT 94
6.2.2 The @NIef AttrIDULE. it e e et e e e e s et eesaae e s saa e s esba e sraneaees 95
6.2.3 The @SCOPE ALIIDULE.cciiii et a e e e e e 96
6.2.4 The @UYPE AtFTDULE......co it e e e e e e e et e e e e e e e e e e e e aaannes 97
6.3 URI-based (direCt) @dreSSING........cuuuiiiiiiiiiiiiiiiit ettt e e e e e e e e e e e e e e aanbnbeeeeeeas 98
6.4 Indirect key-based addreSSiNg........ .. e 100
6.4.1 Core concepts for working With KEYS...........uuuiiiiiiiiiiiii e 100
6.4.2 Setting key names with the @Keys attribUte. ... 102
6.4.3 The @Keyref attriDULE. ... e e e e e e e e e e eaeee 103
6.4.4 USIiNg KeYS fOr a0drESSING.oceeeeiiiieeiieee ettt e e e e e e et e e e e e e e e e e as 103
B.4.5 KBY SCOPES. ...ttt ettt e o et e e e e e e e e e e e e e et et et ettt e bebhbabn e a e e e e e e aaaaaas 104
6.4.6 The @KEYSCOPE AltIIDULE.ueiiiiiiiieiie et e e e e et e e e e e e e e e e e e aans 105
6.4.7 AAresSing KEYS ACIOSS SCOPES. ...uuuttttiaaaaaaiiiitttteet ettt e e e e e e e e s abbbbeeeeeaaaaaaeesaaannbbebeeeaaaeaaaaaaas 106
6.4.8 Cross-deliverable addressing and INKING..........ooocuiiiiiii e 108
6.4.9 Processing KeY FefEIrENCES.t e e e r e e e e e e e e 110
6.4.10 Processing key references for navigation links and images...........cccccceveeeiiniiiiiiiiieeeeeeeenn. 111
6.4.11 Processing key references on <topicref> elements...........oooouiiiiiiiiiiin e 111
6.4.12 Processing key references to generate text or ink text............ccccvvvieiiiiiiiiiieeeeeeen 112
6.4.13 EXAMPIES OF KEYS. ... ittt e e e e e e e e bbbt e e e e e e e e e e e e e nnnbeeeeees 113
6.4.14 EXamples Of SCOPEA KBYS.... oottt e e e e e e e et eeeaaaaeas 121
6.5 Context hOOKS fOr USEI ASSISTANCE.........ciiiiiiiiiee ettt s e e 130
7 DITA PrOCESSING. ... tttteeeeeetaea e e e e ae ettt ettt et e e e e e e e e s aaaabbebee e eeaeaaaeeeeaaaaantbabeeeeeeeaaaeeesaa e nnsbabbeeeeaeaaaeaesaaannnnbnbnnns 131
% R NN = 1Y o =i o T o PO UO PP PPPPPPRN 131
7.1.1 TabIE Of CONTENES.eeiiiiitiiit ettt et e s e e e e b e e e e b e e e e e nnreas 131
7.01.2 ARRBINALIVE TIHES...cei ittt e e e st e e e e s sbr e e e e s anbreeeeeaaes 131
dita-2.0-specification 26 August 2024

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 6 of 471

A 1 416 1) ST 134

7.2.1 INAEX OVEIVIEW. ... iitiieee ettt ettt ettt e ekt e e e e e st et e e e ek bt e e e e ek et e e e e sa b et e e e e anbbe e e e e e anbn e e e e e annres 134
7.2.2 INAEX CIEIMENES.....ceiiiiitiitee ettt e e e e b e e e e e s st b e e e e e s abbe et e e s abbr e e e e s anbneeeeeaans 135
7.2.3 Location of <indeXterm> €lemMENTS........c.coiiiiiiiiiiiiie e 135
7.2.4 INAEX IOCALOIS.eeiieiitiitee ettt ettt e e e skt e e e st b e e e e s akbe et e e s abbe e e e e s anbnneeeeaans 136
AR 410 (=) q (=T o [T =Toi (o] o O PP PP RP P PPPPPPTN 136
A [0 To (o) = g o = TR TT ORI 136
A A 10 To [y Q=Yoo Vo TP PUUPPRPTR 137
7.2.8 EXAMPIES OF INUEXING.eeeeeiiiiieeeiee ittt e e e e st e e e e e e e e e e s e nnnbrneeeeeeeas 138
7.3 Content referenNCe (CONTET).... o i et e e e e eeeaaaaaeas 139
7.3.1 CONTET OVEIVIEW.......teiiee ettt e e ekt e e e st et e e e ek bt e e e e anb bt e e e e anbr e e e e e annnees 139
7.3.2 The @CONACLION ALIIHDULE.oiieeiiie et e e e e e e et e e sa e e st e e saba s e esaneesans 140
7.3.3 The @CONIEfENd AttIIDULE.ccieeeieeie et e et e e e e e e e e e e s et e e e sba e asaaeeeeas 144
7.3.4 The @conkeyref attriDULE..........oi e 148
7.3.5 The @CONIES ALIIIDULE.iiee i e et e et e e e e e et e e e s e e s aa e s esba e asaaneesees 148
7.3.6 Using the "-dita-use-conref-target” ValUe.............c e 149
7.3.7 ProCeSSING CONIETS. ...ttt e et e e e e e e s e bbbt e et e e e e e e e e e e e aaaaae 150
7.3.8 Processing attributes when resolving CONIefs...........oi e 151
7.3.9 Processing xrefs and conrefs within a Conref..........oooo e 152
7.4 CONAILIONAl PIrOCESSING...ceiiieiiiieiiitit ettt ettt e e e e e e e e e e bbb b e e eeeeeaaaaeesaaannbbsbeeeeaaaaaeeaesaannne 154
7.4.1 About CONAItIONAI PrOCESSING. ... ueeeieiieaeiii ittt e et e e e e e e s e b e beeeeaaaaaeaeeaaannnnes 154
7.4.2 Expectations for conditional PrOCESSING.......ooiuuutiiiiieiiae ettt e e e e e e 156
7.4.3 ADOUL the DITAVAL GOCUMENT.......uuiiiiiiiiiiee ettt ettt e et e et e e et e e e s st e e e e s anrreeeesaaes 156
7.4.4 Conditional processing attribute ValUES...........ooo it 157
7.4.5 Conditional processing attribute values With groups.ceioiiiiiiiiii e 157
7.4.6 Conditional processing and SUDJECt SChEMES.........cooiiiiiiiiiiiie e 158
7.4.7 Filtering based on metadata attribULES...........oceuiiiiiiiii e 158
7.4.8 Flagging based on metadata attribUtes...........c..euiiiiiiiiiiei e 159
7.4.9 Examples of conditional ProCESSING......cciii ittt e e e e e 160
7.5 BranCh fIEEIING.ueeeeeiiiieeee ettt et e e e e e e e e e s e b bbb aeeeeeaaaaeeaeaannnnes 165
7.5.1 Overview of Dranch filteriNg...........oo e 165
7.5.2 HOW filtering ruleS INTEIACT..........ueeieiiiiiiie ettt e e e e e e e e 165
7.5.3 Branch filtering: Single referenced DITAVAL document for a branch...............cccccccccein. 166
7.5.4 Branch filtering: Multiple referenced DITAVAL documents for a branch.....................cooeee 166
7.5.5 Branch filtering: Impact on resource and KeY NAamES..........cceeiiaiaiiiiiiiiiiiiiiieeee e 167
7.5.6 Branch filtering: Implications of proCceSsSiNg OFder.........couiiiiiiiiiiiiiiiiieeie e 169
7.5.7 Examples of branch filtering............eeeoiiiiii e 170
LTS To] 111 0 To PRSP P PP PRUPTRPN 179
7.7 Determining effective attribDULe VAIUES.........cooii i 180
8 Configuration and SPECIAIIZALIONccuiiiiiiiiii e e e e 182
8.1 Overview of DITA eXtension fACIlItIES.ccuviiiiiiii e 182
8.2 DocumeNt-type CONFIGUIATION.uueiiiiiiii ettt e aannnnes 182
8.2.1 Overview of document-type ShellS.........coouiiiiiiiiii e 182
8.2.2 Rules for document-type SNElIS..........ooi e 184
8.2.3 Equivalence of document-type ShellS....... ... 184
8.2.4 Conformance of document-type ShellS............oi e 185
8.3 SPECIALIZALION.cii ittt e ettt e e e e e e e e bbb et e et e e e e e e e e e e nbab e b e e aaaaaaaaas 185
8.3.1 Overview Of SPECIAIZALION.........ceiiii e e e e e 185
8.3.2 MOTUIBIIZATION.eeeeiiieiee ettt ettt e e e sk e e e s et bt e e e st be et e e s sbrr e e e e s anrrneeeeanns 186
8.3.3 VOCaAhUIArY MOTUIES. ..ot e e e e e e e e e e e as 187
8.3.4 Specialization rules for elemMeNnt TYPES.........uuiiiiiiiiiie e 187
8.3.5 Specialization rules for attriDULES.ooii e 188
dita-2.0-specification 26 August 2024

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 7 of 471

8.3.6 The @class attribute rules and SYNTAX.........ceiiiiiiaiiiiiiiiiie e 188

8.3.7 The @specializations attribute rules and SYNAX..........cceiiiiariiiiiiiiiiiiiieee e 190
8.3.8 Specializing to include NON-DITA CONTENL......ccciiiiiiiiiiiie et 191
8.3.9 Sharing elements across SPeCialiZatioNS.ceiiiiaiiiiiiiiiie e 192
R 1= o= =14 (o] o TP P PSPPI PPPPRPPN 193
8.4.1 Overview Of geNEraliZatioN............uu it e e 193
8.4.2 Element generaliZation............u ettt e e a e e e e e e e e aaa 193
8.4.3 Processor expectations when generalizing elements. ... 194
8.4.4 AUIDULE gENEIAlIZALION.ccii ittt e e e e e e e e eeeaeaaeas 195
8.4.5 Generalization with cross-specialization dependencies...........ccuuveieiiiieeiiiniiiiiiiiieeeee e 196
RS Of0] 0151 1 =] 0 F PP PRSP PPPPRPPN 196
8.5.1 OVEIVIEW Of CONSIIAINTS.vveieieiitiiee ettt e et e e e et e e s st e e e e s sbn e e e e e aanbreeeenanes 196
8.5.2 CONSITAINT TUIES.eiieiiiieie ettt et e s e e e e e s e b e e e e e nnneas 197
8.5.3 Constraints, processing, and interoperability..............ooo i 198
8.6 EXPANSION MOUUIES......eiiiiiiee ittt e ettt e et e e e e e e s s e e anbbbbeeeeeaaaeeeeeeaannnes 198
8.6.1 Overview of expansion MOAUIES...........oooi i 198
8.6.2 EXPansion MOAUIE TUIES.........c.eeeeiiiieeiie e e e e e e e e e e e 199

o S T 01T A =) =T =T ot PP PO PP PP PPPPPPN 201
.1 DITA €IEMENTS, A TO Z.....eeeeieeiiiieie ettt ettt e e st e e s e bt e e s e sb e e e e annbre e e s e nnnnes 201
9.2 DITA ALIIDULES, A TO Z...eiiiiiiiieee ettt ettt e st e e e e e e e s bbbt e e s anb et e e s annnneee s 204
L RS Lo o] (ol =1 =T 41T o | £SO PPPPPPRN 206
9.3.1 BASIC tOPIC BIEMENTS.ttt e e e e e e e e e e et bbb e e e e e e aaeeeeeaannnnes 206
LRSI = T To VA =1 (=10 T o] £ TR PRI 215
9.3.3 MUIIMEAIA EIEMENTS. ...ttt e e e e s e e e e e 243
9.3.4 INAEXING EIEMEBNTS.ttt e e e e e e et bbbt e e e e e e e e e e e s e e annabbabeeeeeeas 249
9.3.5 Related lINKS ElEMENES.oiiiiiiiie it e e s 252
9.3.6 TaDIE EIEMIENTS.......eeiieiiieee e s e e s 255
9.4 MAP EIEMIEBNTS. ...ttt ettt e e e e e oo e et bbbt e e e e e aaaaee e s e e annbbbbe et e aaaaeeeeeaannnnbenneees 263
9.4.1 BASIC MAP CIEMENTS....coiiiiii ittt e e ettt e e e e e e e e e e e e e s bbb e e eeaaaaaaaaaas 263
9.4.2 SUDjJect SChemeE EIEMENTS.......oooi i a e 276
9.5 Metadata ElEMEINTS.eii ittt e e et r e e e st e e e e s s b e e e e e e e e s e reeenaa 285
9.5.1 DESCIPUVE MELAGALA.eetiiiee ettt e e e e e e ettt e e e e e e e e e e s e e snnbbebeeeeaaaaans 285
9.5.2 Lifecycle management Metadatal...........ooiiiiiiiiiiiiiiie e 289
9.5.3 Product information METATALA.vvviieiitiiiiee ittt 296
9.6 SPECIAlIZAtION EIEMEBNTS.eiiiiiiie ettt e e e e e e e et e e et e e e e e e e e e e nnabbaaeeeeaaaaens 298
S G o =1 - b OO P O PP PPPPPPTP 299

1S I I (0] =10 | PP PP PRSPPI 300

1S IR I g o (o]][0 0 1= 2] 1] T P UT PRI 301
9.7 DOMAIN EIEIMENTS. ...ttt ettt e ekttt e e r bt e e s s b e et e e s bbb et e e s aab b e et e e s nbbn e e e s annnneeeas 302
9.7.1 Alternative-titles domain EIEMENTS..........cooiiiiiiiie e 302
9.7.2 DITAVAL-reference domain EleMENL............uuiiiiiiiiiiee et 307
9.7.3 EMpPhasis dOmain EIEMENTS.cooiiiiietee et e e e e e e e e 314
9.7.4 Hazard-statement domain €lemMENTS...........oooiiiiiiiiiiiee e 315
9.7.5 Highlighting domain €IEMENTS............euiiiiiiiiiie e 321
9.7.6 Mapgroup dOmMaiN ElEMENTS.cuiii ittt e aaaaans 325
9.7.7 ULilities dOmMain ElEMENTS.coi it e e st e s e e e 330
9.8 OtNEI BIBIMENTS. ...ttt et e e s bt e e e sk e e e e e s st be e e e e s asbr e e e e s abrnneeenns 337
9.8.1 Legacy CONVEISION EIEMENTS.ciiiiiiiiii ittt e e e e e e e e e s e aanbb b e e e e e e eaaaaeesaaanan 337
9.8.2 DITAVAL EIBMENTS.eeeieie ittt e st e e s et e e e s aab e e e e e s anbr e e e e s abreeeeeaa 338
9.9 ALIOULES. ...ttt e e et e e e it e e e s bt e e e e b e e e e e e e annes 348
9.9.1 AUIIDULE GIOUPS. ... tttteeeeeeie e e e e ettt e e e e e e e e e ettt et e e ae e e e e e s e aababbe et e e e aaaaeeesaaannnbbbbeeeaaeaaaaaans 348
9.9.2 Universal attriDULE grOUP.oiii ittt e e e e e e e e s nabbareeeeeeas 362
dita-2.0-specification 26 August 2024

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 8 of 471

9.9.3 COMMON ATTIDULES.eee ittt e e e e e e e e et e e e e e s e st e s e sba e s saasesabsesnnnes 367

O O] a1 (o171 1 F=Tg ol PO PP RTPPPPPPPPPPP 381
A ACKNOWIBAGMENTS. ...ttt e e ettt et e e e e e e e s e e s e ab bbbt et e e e eaaeeesaaannbbebbneeeaaaaaeeesaannnne 383
B Aggregated RFC-2119 StAtEMENTS.ttt e ettt e e e e e e e e e s s bt e aeeeeaaaaaeaaeas 384
C Coding practices for DITA grammar fill@S.........oouuuiiiiiiiiiiie e 396
C.1 File NAMING CONVENTIONS.coiiiiitiitiieieeee e e ettt ettt e e e e e e s e e e babbeeeeeeeaaaaessaaaansbbeaeeeeaaaaaeaaeaaannene 396
C.2 DTD COAING FEOUITEMENTS.uttetieiieaaee et attttee e ee et e e e e e e e s e aaatbebeeeeeaeaaaaeesaaananbbesseeeaaaaaeesesaansnnbeseees 396
C.2.1 DTD: USE Of BNETIES.eeiiiiiitiieee ittt ettt e ekt e e s st e e e s st e e e e s sbbe e e e e s sarneeeeeaas 396

C.2.2 DTD: Coding requirements for document-type shells...........ccccooiiiiiiiiiiiie 397

C.2.3 DTD: Coding requirements for structural and element-domain modules...............cccccceeeeennn. 401

C.2.4 DTD: Coding requirements for structural modules...............ccuueiiiiiiiiiiiieeee e 404

C.2.5 DTD: Coding requirements for element-domain ModUules............ccccviiiiiiiiiiiiiiiiiieeee e 405

C.2.6 DTD: Coding requirements for attribute-domain modules...............cccoiiiiiiiniii, 406

C.2.7 DTD: Coding requirements for element-configuration modules...........ccccccviiiiiiiiiiieennnnnenn. 406

C.3 RELAX NG COAING FEOUINEIMIENTS.teiiiieieeeeieiiiititteeeeeeeaa e e e e s e aaibabeeeeeaaaaaasasaaannbbesaeeeeaaaaaasaaaannene 408
C.3.1 RELAX NG: Overview of cOdiNg reQUINEMENTS.cuiiiiiaaiiiiiiiiiiiiieee e e e e e e e e eaaaae e e 408

C.3.2 RELAX NG: Coding requirements for document-type shells..........ccccccciiiiiiiiiinn. 409

C.3.3 RELAX NG: Coding requirements for structural and element-domain modules................... 411

C.3.4 RELAX NG: Coding requirements for structural modules..............cc.eeeeviiiiiiiiniiiiiiiiieeeeeeee, 414

C.3.5 RELAX NG: Coding requirements for element-domain modules...........ccccccoeiiiiiiiiiiiiennnnnenn. 416

C.3.6 RELAX NG: Coding requirements for attribute-domain modules...............cccooiiieeiinnnnn. 416

C.3.7 RELAX NG: Coding requirements for element-configuration modules...........ccccccceeiiniinnns 418

D CONSIrAINT MOUUIES.cooiiiiiiiie ettt e st e e st e e s st e et e e s s b e et e e s anbne e e e s annnneee s 420
D.1 Examples: Constraints implemented USiNg DTDS.........c.uuuiiiiiiiiiiaaaiiie e ee e 420
D.1.1 Example: Restrict the content model for the <topic> element using DTD...........cccceeeeeeeeenn. 420

D.1.2 Example: Constrain attributes for the <section> element using DTD...........ccccceiaiiiiiiniinnnne 421

D.1.3 Example: Constrain a domain module USING DTD.........uuiiiiiiiiiiiiiiiiiiieeeee e 423

D.1.4 Example: Replace a base element with the domain extensions using DTD................coeue. 423

D.1.5 Example: Apply multiple constraints to a single document-type shell using DTD................. 424

D.2 Examples: Constraints implemented USiNg RNG.........ccooiiiiiiiiii e 424
D.2.1 Example: Restrict the content model for the <topic> element using RNG..........cccccccoeeiniee 424

D.2.2 Example: Constrain attributes for the <section> element using RNG..........cccccccoiiiiiiiiinnen. 425

D.2.3 Example: Constrain a domain module using RNG..........ccooiiiiiiiiiiiiee e 426

D.2.4 Example: Replace a base element with the domain extensions using RNG........................ 427

D.2.5 Example: Apply multiple constraints to a single document-type shell using RNG................ 427

E EXPANSION MOAUIES.....eeeiiiiiieee ittt ettt et e e e e e e e b b ettt e et e e e e e e e e e s anbbbbe et e e eeaaaeeesaaannnnbnreees 430
E.1 Examples: Expansion implemented USING DTDS.....ccoouiiiiiiiiiiiiiiieee e 430
E.1.1 Example: Adding an element to the <section> element using DTDS........ccccceeeiiiiiiiiiiiennen. 430

E.1.2 Example: Adding an attribute to certain table elements using DTDS........ccccceeeiiiiiiiiiiieenen. 432

E.1.3 Example: Adding an existing domain attribute to certain elements using DTDs................... 433

E.1.4 Example: Aggregating constraint and expansion modules using DTDS............ccccuvvveeeeenennn. 435

E.2 Examples: Expansion implemented USing RNG...........ouiiiiiiiiiiiiie e 435
E.2.1 Example: Adding an element to the <section> element using RNG............ccccccceiniiiniiiinnns 435

E.2.2 Example: Adding an attribute to certain table elements using RNG...........ccccccccciiiiiiniiinnns 437

E.2.3 Example: Adding an existing domain attribute to certain elements using RNG.................... 439

E.2.4 Example: Aggregating constraint and expansion modules using RNG..........ccccccceiiiiiiiinnns 440

F Element-by-element recommendations for tranSIators.eeeiiiiiiiiiii e 443
G FOrMAtting @XPECTALIONS.utieeieeiieie e ettt e e e e ettt et e e e e e e e e s e e ab bbbt e e eeeaaaaeeeesaannnbabbeeeeaaaaaaaans 452
H MIGFrating tO DITA 2.0 ..o c ittt ettt et e e e e e e oo e et bt be ettt e e e e e e e e s e e aa bbb beeeeeaeaeaeaesaannnbbnbaeaeaaaaans 453
H.1 Changes from DITA 1.3 10 DITA 2.0 .ottt e e e e e e e e e e e e e s e eanneseeeees 453
H.2 Information about migrating t0 DITA 2.0.......uuiiiiiiiiaiie e 453

| OASIS grammar filES.......cooi ettt e e e e e e e e ettt e e e e e e e e e e e s e ann b b aeeeaaaaeeas 454
dita-2.0-specification 26 August 2024

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 9 of 471

I.1 File names in the base DITA @AItION........ooieeeii et e e et e e e s e e e st eeraneeees 454

[.2 Globally-unique identifiers in the base DITA @ditioN...........cooiiiiiiiiiii e 455
1.3 Domains provided in the base DITA €aItiON..........eoiiiiiiiiiiiie e 456
I.4 Document-type shells provided in the base DITA edition...........ccuuuiiiiiiiiiiiiieee e 457
J Processing interoperability CONSIAEIAtIONS.uuuiiiiiiiiaiaiai ittt e et e e e e eeee s 458
N RSV S To] o N 011 (o YU TR 460
0T 463
dita-2.0-specification 26 August 2024

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 10 of 471

1 Introduction

The Darwin Information Typing Architecture (DITA) specification defines a set of document types for
authoring and aggregating topic-oriented information, as well as a set of mechanisms for combining,
extending, and constraining document types.

1.1 Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT, "RECOMMEND", "MAY", and "OPTIONAL" in this document are to be interpreted as described in
[RFC-2119] (11) and [RFC8174] when, and only when, they appear in all capitals, as shown here.

The DITA specification uses <keyword> elements with the Qoutputclass attribute set to "RFC-2119"
for these key words. In general, normative statements that use such key words pertain to what is needed
for interoperability.

These key words are rendered with bold formatting. The normative statements are indicated visually in
the rendered specification by blue lines at the left and right of the statement:

004 (417) If the root element of a map or a top-level topic has no value for the @xml:lang
attribute, a processor SHOULD assume a default value. The default value of the
processor can be either fixed, configurable, or derived from the content itself, such
as the @xml : 1ang attribute on the root map.

In addition, a hyperlink is rendered to the left of the statement that contains the normative term. The link is
to a generated appendix that groups all the normative statements that appear in the specification.

1.2 References
This section contains the normative and informative references that are used in this document.

While any hyperlinks included in this section were valid at the time of publication, OASIS cannot
guarantee their long-term validity.

1.2.1 Normative references

The following documents are referenced in such a way that some or all of their content constitutes
requirements of this document.

[RFC-2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI
10.17487/RFC2119, March 1997, <http://www.rfc-editor.org/info/rfc2119>.

[RFC 3986]
Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform Resource Identifier (URI): Generic Syntax",
STD 66, RFC 3986, DOI 10.17487/RFC3986, January 2005, <http://www.rfc-editor.org/info/rfc3986>.

[RFC 5646]
Phillips, A., Ed., and M. Davis, Ed., "Tags for Identifying Languages”, BCP 47, RFC 5646, DOI
10.17487/RFC5646, September 2009, <http://www.rfc-editor.org/info/rfc5646>.

[RFC8174]
Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI
10.17487/RFC8174, May 2017, <http://www.rfc-editor.org/info/rfc8174>.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 11 of 471

http://www.rfc-editor.org/info/rfc2119
http://www.rfc-editor.org/info/rfc3986
http://www.rfc-editor.org/info/rfc5646
http://www.rfc-editor.org/info/rfc8174

[XML 1.0]
Extensible Markup Language (XML) 1.0 (Fifth Edition), T Bray, J. Paoli, M. E. Maler, F. Yergeau,
Editors, W3C Recommendation, 26 November 2008, http://www.w3.0rg/TR/2008/REC-
xml-20081126/. Latest version available at http://www.w3.org/TR/xml.

[XML 1.1]
Extensible Markup Language (XML) 1.1 (Second Edition), T. Bray, J. Paoli, M. E. Maler, F. Yergeau,
J. Cowan, Editors, W3C Recommendation, 16 August 2006, http://www.w3.0rg/TR/2006/REC-
xml11-20060816/. Latest version available at http://www.w3.0org/TR/xml11/.

1.2.2 Informative references

The following referenced documents are not required for the application of this document but might assist
the reader with regard to a particular subject area.

[ANSI Z535.6]
Product Safety Information in Product Manuals, Instructions And Other Collateral Materials, https://
webstore.ansi.org/Standards/NEMA/ansiz5352011r2017-1668876.

[HTML5]
HTML 5, Living Standard, https://html.spec.whatwg.org/.

[ISO 8601]
ISO/TC 154, Data elements and interchange formats—Information interchange—Representation of
dates and times, 3rd edition, http://www.iso.org/iso/catalogue_detail?csnumber=40874, 12 December
2004.

[ISOI/IEC 19757-3]
ISO/IEC JTC 1/SC 34 Document description and processing languages, Information technology—
Document Schema Definition Languages (DSDL)—Part 3: Rule-based validation—Schematron,
http://www.iso.org/iso/catalogue_detail.htm?csnumber=40833, 1 June 2006.

[Namespaces in XML 1.0]
Namespaces in XML 1.0 (Third Edition), T. Bray, D. Hollander, A. Layman, R. Tobin, H. S. Thompson,
Editors, W3C Recommendation, 8 December 2009, http://www.w3.0rg/TR/2009/REC-xml-
names-20091208/. Latest version available at http://www.w3.0org/TR/xml-names.

[Namespaces in XML 1.1]
Namespaces in XML 1.1 (Second Edition), T. Bray, D. Hollander, A. Layman, R. Tobin, Editors, W3C
Recommendation, 16 August 2006, http://www.w3.0rg/TR/2006/REC-xml-names11-20060816/.
Latest version available at http://www.w3.org/TR/xml-names11/.

[OASIS Table Model]
XML Exchange Table Model Document Type Definition. Edited by Norman Walsh, 1999. Technical
Memorandum TR 9901:1999. https://www.oasis-open.org/specs/tm9901.htm.

[RELAX NG]
J. Clark and M. Murata, editors, RELAX NG Specification, http://www.oasis-open.org/committees/
relax-ng/spec-20011203.html, OASIS Committee Specification, 3 December 2001.

[RELAX NG Compact Syntax]
J. Clark, editor, RELAX NG Compact Syntax, http://www.oasis-open.org/committees/relax-ng/
compact-20021121.html, OASIS Committee Specification, 21 November 2002.

[RELAX NG DTD Compatibility]
J. Clark and M. Murata, editors, RELAX NG DTD Compatibility, http://lwww.oasis-open.org/
committees/relax-ng/compatibility-20011203.html, OASIS Committee Specification, 3 December
2001.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 12 of 471

http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/xml
http://www.w3.org/TR/2006/REC-xml11-20060816/
http://www.w3.org/TR/xml11/
https://webstore.ansi.org/Standards/NEMA/ansiz5352011r2017-1668876
https://html.spec.whatwg.org/
http://www.iso.org/iso/catalogue_detail?csnumber=40874
http://www.iso.org/iso/catalogue_detail.htm?csnumber=40833
http://www.w3.org/TR/2009/REC-xml-names-20091208/
http://www.w3.org/TR/xml-names
http://www.w3.org/TR/2006/REC-xml-names11-20060816/
http://www.w3.org/TR/xml-names11/
https://www.oasis-open.org/specs/tm9901.htm
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html
http://www.oasis-open.org/committees/relax-ng/compact-20021121.html
http://www.oasis-open.org/committees/relax-ng/compact-20021121.html
http://www.oasis-open.org/committees/relax-ng/compatibility-20011203.html
http://www.oasis-open.org/committees/relax-ng/compatibility-20011203.html

[SVG 1.1]
Scalable Vector Graphics (SVG) Version 1.1 (Second) Edition), E. Dahlstrom, P. Dengler, A. Grasso,
C. Lilley, C. McCormack, D. Schepers, J. Watt, Editors, W3C Recommendation, 16 August 2011,
https://lwww.w3.0rg/TR/SVG11/.

[Unicode BiDi]
Unicode Bidirectional Algorithm, M. Davis, A. Lanin, A. Glass, Editors, Unicode Technical Report, 27
August 2021, https://www.unicode.org/reports/tro/.

[WCAG 2.1]
Web Content Accessibility Guidelines (WCAG) Version 2.1, A. Kirkpatrick, J. O Connor, A. Campbell,
M. Cooper, Editors, W3C Recommendation, 05 June 2018, https://www.w3.org/ TR/ WCAG21/.

[XHTML 1.0]
XHTML™ 1.0 The Extensible HyperText Markup Language (Second Edition), S. Pemberton, Editor,
W3C Recommendation, 1 August 2002, http://www.w3.0rg/TR/2002/REC-xhtml1-20020801. Latest
version available at http://www.w3.org/TR/xhtml1.

[XHTML 1.1]
XHTML™ 1.1 — Module-based XHTML — Second Edition, S. McCarron, M. Ishikawa, Editors, W3C
Recommendation, 23 November 2010, http://www.w3.0rg/TR/2010/REC-xhtmI11-20101123. Latest
version available at http://www.w3.org/TR/xhtml11/.

[XPointer 1.0]
XML Pointer Language (XPointer), S. J. DeRose, R. Daniel, P. Grosso, E. Maler, J. Marsh, N. Walsh,
Editors, W3C Working Draft (work in progress), 16 August 2002, http://www.w3.0rg/TR/2002/WD-
Xptr-20020816/. Latest version available at http://www.w3.org/TR/xptr/.

[XML Catalogs 1.1]
OASIS Standard, XML Catalogs Version 1.1, 7 October 2005, https://www.oasis-open.org/
committees/download.php/14809/xml-catalogs.html.

[xml:tm 1.0]
A. Zydron, R. Raya, and B. Bogacki, editors, XML Text Memory (xml:tm) 1.0 Specification, http://
www.gala-global.org/oscarStandards/xml-tm/, The Localization Industry Standards Association
(LISA) xml:tm 1.0, 26 February 2007.

[XSL 1.0]
Extensible Stylesheet Language (XSL) Version 1.0, S. Adler, A. Berglund, J. S. Deach, T. Graham, P.
Grosso, E. Gutentag, A. Milowski, S. Parnell, J. Richman, S. Zilles, Editors, W3C Recommendation,
15 October 2001, http://www.w3.0rg/TR/2001/REC-xsl-20011015/. Latest version available at http://
www.w3.0rg/TR/xsl/.

[XSL 1.1]
Extensible Stylesheet Language (XSL) Version 1.1, A. Berglund, Editor, W3C Recommendation, 5
December 2006, http://www.w3.0rg/TR/2006/REC-xsl11-20061205/. Latest version available at http://
www.w3.0rg/TR/xsl11/.

[XSLT 2.0]
XSL Transformations (XSLT) Version 2.0, M. Kay, Editor, W3C Recommendation, 23 January 2007,
http://www.w3.0rg/TR/2007/REC-xslt20-20070123/. Latest version available at http://www.w3.org/TR/
xslt20.

[XSLT 3.0]
XSL Transformations (XSLT) Version 3.0, M. Kay, Editor,W3C Recommendation, 8 June 2017,
https://lwww.w3.org/TR/xslt-30/.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 13 of 471

https://www.w3.org/TR/SVG11/
https://www.unicode.org/reports/tr9/
https://www.w3.org/TR/WCAG21/
http://www.w3.org/TR/2002/REC-xhtml1-20020801
http://www.w3.org/TR/xhtml1
http://www.w3.org/TR/xhtml1
http://www.w3.org/TR/2010/REC-xhtml11-20101123
http://www.w3.org/TR/xhtml11/
http://www.w3.org/TR/xhtml11/
http://www.w3.org/TR/2002/WD-xptr-20020816/
http://www.w3.org/TR/xptr/
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
http://www.ttt.org/oscarStandards/xml-tm/
http://www.ttt.org/oscarStandards/xml-tm/
http://www.w3.org/TR/2001/REC-xsl-20011015/
http://www.w3.org/TR/xsl/
http://www.w3.org/TR/2006/REC-xsl11-20061205/
http://www.w3.org/TR/xsl11/
http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.w3.org/TR/xslt20
https://www.w3.org/TR/xslt-30/

[XTM 1.0]
S. Pepper and G. Moore, editors, XML Topic Maps (XTM) 1.0, http://lwww.topicmaps.org/xtm/
index.html, TopicMaps.Org XTM 1.0, 2001.

1.3 Normative versions of DITA grammar files

DITA document types and vocabulary modules can be constructed using several XML-document
grammar mechanisms. The DITA specification provides coding requirements for DTDs and RNG, and it
also includes grammar files that are constructed using those mechanisms. The RNG grammar files are
normative.

The DITA Technical Committee chose the RELAX NG XML syntax for the following reasons:
Easy use of foreign markup

The DITA grammar files maintained by OASIS depend on this feature of RELAX NG in order to
capture metadata about document-type shells and modules.

The foreign vocabulary feature can be used to include metadata. The DITA 1.3 RNG-based grammar
files contained metadata that was used when DTD- and XSD-based grammar files were generated.

The foreign vocabulary feature can also be used to include Schematron rules directly in RELAX NG
grammars. Schematron rules can check for patterns that either are not expressible with RELAX NG
directly or that would be difficult to express.

RELAX NG <div> element
This general grouping element allows for arbitrary organization and grouping of patterns within
grammar documents. Such grouping tends to make the grammar documents easier to work with,
especially in XML-aware editors.

Capability of expressing precise restrictions
RELAX NG is capable of expressing constraints that are more precise than is possible with DTDs.
For example, RELAX NG patterns can be context specific such that the same element type can allow
different content or attributes in different contexts. However, the grammar files that are provided by
the OASIS DITA Technical Committee do not use any features of RELAX NG that cannot be
translated into equivalent DTD constructs.

The DITA use of RELAX NG depends on the RELAX NG DTD Compatibility specification, which provides
a mechanism for defining default-attribute values and embedded documentation. Processors that use
RELAX NG for DITA documents in which required attributes (for example, the @class attribute) are not
explicitly present must implement the DTD compatibility specification in order to get default attribute
values.

1.4 Formatting conventions in the HTMLS5 version of the specification
Given the size and complexity of the specification, it is not generated as a single HTMLS5 file. Instead,
each DITA topic is rendered as a separate HTMLS5 file.

The HTMLS5 version of the specification uses certain formatting conventions to aid readers in navigating
through the specification and locating material easily: Link previews and navigation links.

1.4.1 Link previews

The DITA specification uses the content of the DITA <shortdesc> element to provide link previews for
its readers. These link previews are visually highlighted by a colored background.

The link previews serve as enhanced navigation aids, enabling readers to more easily locate content.
This usability enhancement is one of the ways in which the specification illustrates the capabilities of DITA
and exemplifies DITA best practices.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 14 of 471

http://www.topicmaps.org/xtm/index.html
http://www.topicmaps.org/xtm/index.html

The following screen capture illustrates how link previews are displayed in the HTML5 version of the
specification:

Figure 1: Link previews

P N N S e N T

5.2.1 Subject scheme maps
Subject scheme maps use key definitions to define collections of controlled values and
subject definitions.

5.2.2 Defining controlled values for attributes

Subject scheme maps can define controlled values for DITA attributes without having to
define specializations or constraints. The list of available values can be modified quickly
to adapt to new situations.

5.2.3 Binding controlled values to an attribute

The controlled values defined in a subject scheme map can be bound to an attribute or an
element and attribute pair. This affects the expected behavior for processors and
authoring tools.

5.2.4 Processing controlled attribute values
An enumeration of controlled values can be defined with hierarchical levels by nesting

T suleahdefinbigns.Aeis gfieets howeeremmsgors paetes) flligemgeeadfequing, i a0

1.4.2 Navigation links

To ease readers in navigating from one topic to another, each HTMLS5 file generated by a DITA topic
contains navigation links at the bottom.

Parent topic
Takes readers to the parent topic, which is the topic referenced by the closest topic in the
containment hierarchy

Previous topic
Takes readers to the previous topic in the reading sequence

Next topic
Takes readers to the next topic in the reading sequence

Return to main page
Takes readers to the place in the table of contents for the current topic in the reading sequence

The following screen capture illustrates how navigation links are displayed in the HTMLS5 version of the
specification:

Figure 2: Navigation links

P TTIN PIN A _PNTTININN TTN

Parent topic: 5 DITA map processing
Previous topic: 5.1 DITA maps and their usage
Next topic: 5.2.1 Subject scheme maps

When readers hover over the navigation links, the short description of the DITA topic is also displayed.

1.5 About the specification source

The DITA specification is authored in DITA. It is a complex document that uses many DITA features,
including key references (keyrefs), content references (conrefs), and controlled values set in a subject
scheme map.

The source files for the DITA specification are managed in a GitHub repository that is maintained by
OASIS; they also can be downloaded from OASIS.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 15 of 471

The DITA Technical Committee used the following applications to work with the DITA source:

¢ Antenna House Formatter
» DITA Open Toolkit

« Congility Content Server

« Oxygen Content Fusion

* Oxygen XML Editor

« XMetal Author Enterprise

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 16 of 471

2 DITA terminology, notation, and conventions
The DITA specification uses specific notation and terms to define the components of the DITA standard.

2.1 Normative and non-normative information
The DITA specification contains normative and non-normative information.

Normative information
Normative information is the formal portion of the specification that describes the rules and
requirements that make up the DITA standard and which must be followed.

Non-normative information
Non-normative information includes descriptions that provide background, examples, notes, and
other useful information that are not formal requirements or rules that must be followed.

All information in the specification is normative unless it is an example, a note, an appendix, or is explicitly
labeled as non-normative.

The DITA specification contains examples to help clarify or illustrate specific aspects of the specification.
Because examples are specific rather than general, they might not illustrate all aspects or be the only way
to accomplish or implement an aspect of the specification. Therefore all examples are non-normative.

2.2 Notation
Certain conventions are used throughout the specification to identify attributes and elements.

attribute types
Attribute names are preceded by @ to distinguish them from elements or surrounding text, for
example, the @props or the @class attribute.

element types
Element names are delimited with angle brackets (< and >) to distinguish them from surrounding text,
for example, the <keyword> or the <prolog> element.

In general, the unqualified use of the term map or topic can be interpreted to mean "a <map> element and
any specialization of a <map> element " or "a <topic> element or any specialization of a <topic>
element.” Similarly, the unqualified use of an element type name (for example, <p>) can be interpreted to
mean the element type or any specialization of the element type.

2.3 Basic DITA terminology

Certain terminology is used for basic DITA components.

Comment by rodaande on 13 December 2022

Somewhere - likely in this topic - we need a definition of "DITA Processor". Currently as used in the
spec, that would encompass any tool that processes DITA in any way — not just rendering tools that
use DITA as source, but any tools that work with DITA. For example, an editor is not required to
evaluate any DITA feature (such as a simple text editor). However a DITA editor that resolves content
references or keys inline is a DITA processor, which is processing those features based on processor
requirements in the spec. Similarly a CCMS that evaluates content references falls under the umbrella
of a DITA processor.

This assumes that we retain current use of "DITA processor" as used in the specification. Jarno noted
that HTML5 uses producer/ consumer, where producer is aimed more at rules for authors / creators of
DITA content and consumer is a tool that acts upon the content.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 17 of 471

Disposition: Unassigned

DITA document

An XML document that conforms to the requirements of this specification.

001 A DITA document MUST have as its root element one of the following
(384) elements:

* <map> Or a specialization of the <map> element

* <topic> or a specialization of the <topic> element

e <dita>, which cannot be specialized, but which allows documents
with multiple sibling topics

Comment by robander on 26 may 2021

picky comment: a <dita> root element (singular) only allows ONE
document with sibling topics. Also, not to over-complicate, but an
ordinary topic also allows sibling topics (as children), so what
really distinguishes this is that it allows "root" siblings, but | don't
think we have a word for that.

Disposition: Unassigned

DITA document type
A unique set of structural modules, domain modules, and constraint modules that taken together
provide the XML element and attribute declarations that define the structure of DITA documents.

DITA document-type shell
A set of DTD or RELAX NG declarations that implement a DITA document type by using the rules
and design patterns that are included in the DITA specification. A DITA document-type shell includes
and configures one or more structural modules, zero or more domain modules, and zero or more
constraint modules. With the exception of the optional declarations for the <dita> element and its
attributes, DITA document-type shells do not declare any element or attribute types directly.

DITA element
An XML element instance whose type is a DITA element type. DITA elements must exhibit a @class
attribute that has a value that conforms to the rules for specialization hierarchy specifications.

Comment by Kristen J Eberlein on 02 July 2019

Suggest removing the last sentence of the definition. It uses the word 'must’; also, it needs to be
better aligned with the topic about architectural attributes.

Disposition: Unassigned

Comment by robander on 26 may 2021

Having @class is such a core part of being a DITA element that I'd be inclined to keep it, except
that 1) we could just remove "must" (it's a statement of fact, not a rule) and 2) | am continually
confused by the term "exhibit" in this context. Also, <dita> doesn't have class and is a DITA
element, so it's an oddball.

Disposition: Unassigned

DITA element type
An element type that is either one of the base element types that are defined by the DITA
specification, or a specialization of one of the base element types.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 18 of 471

map instance
An occurrence of a map type in a DITA document.

map type
A map or a specialization of map that defines a set of relationships among topic instances.

structural type instance
An occurrence of a topic type or a map type in a DITA document.

topic instance
An occurrence of a topic type in a DITA document.

topic type
A topic or a specialization of topic that defines a complete unit of content.

2.4 Specialization terminology
Certain terminology is used to discuss DITA specialization.

base type
An element or attribute type that is not a specialization. All base types are defined by the DITA
specification.

extension element
Within a vocabulary module, an element type that can be extended, replaced, or constrained for use
in a DITA document type.

generalization
The process by which a specialized element is transformed into a less-specialized ancestor element
or a specialized attribute is transformed into a less-specialized ancestor attribute. The original
specialization-hierarchy information can be preserved in the generalized instance; this allows the
original specialized type to be recreated from the generalized instance.

specialization
(1) The act of defining new element or attribute types as a semantic refinement of existing element or
attribute types
(2) An element or attribute type that is a specialization of a base type
(3) A process by which a generalized element is transformed into one of its more specialized element
types or a generalized attribute is transformed into a more specialized attribute.

specialization hierarchy
The sequence of element or attribute types, from the most general to most specialized, from which a
given element or attribute type is specialized. The specialization hierarchy for a DITA element is
formally declared through its @class attribute.

structural type
A topic type or map type.

2.5 DITA module terminology

Certain terminology is used to discuss DITA modules.

attribute domain module
A domain module that defines a specialization of either the @base or @props attribute.

constraint module
A set of declarations that imposes additional constraints onto the element or attribute types that are
defined in a specific vocabulary module.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 19 of 471

domain module
A vocabulary module that defines a set of element types or an attribute type that supports a specific
subject or functional area.

element domain module
A domain module that defines one or more element types for use within maps or topics.

structural module
A vocabulary module that defines a top-level map type or topic type.

vocabulary module
A set of element or attribute declarations.

2.6 Linking and addressing terminology
Certain terminology is used for discussing linking and addressing.

referenced element
An element that is referenced by another DITA element. See also referencing element.
Example

Consider the following code sample from a installation-reuse.dita topic. The <step>
element that it contains is a referenced element; other DITA topics reference the <step> element by
using the Qconref attribute.

<step id="run-startcmd-script">

<cmd>Run the startcmd script that is applicable to your operating-system
environment.</cmd>
</step>

referencing element
An element that references another DITA element by specifying an addressing attribute. See also
referenced element and addressing attribute
Example

The following <step> element is a referencing element. It uses the @conref attribute to reference a
<step> elementin the installation-reuse.dita topic.

<step conref="installation-reuse.dita#reuse/run-startcmd-script">
<cmd/>
</step>

addressing attribute
An attribute, such as @conref, @conkeyref, @keyref, and @href, that specifies an address.

Comment by robander on 26 may 2021

Nit-picking: conkeyref / keyref do not specify an address, they specify a key that can indirectly
result in an address. Maybe rephrase something like this, but not sure where to put the "such as"
here:

An attribute that specifies an address or a that specifies key that resolves to an address.
or maybe
An attribute that specifies an address or that specifies a key.

Disposition: Unassigned

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 20 of 471

2.7 Key terminology

Certain terminology is used to discuss keys.

resource
For the purposes of keys and key resolution, one of the following:

¢ An object addressed by URI
* Metadata specified on a resource, such as a @scope or @format attribute
e Text or metadata located within a <topicmeta> element

key
A name for a resource. See 6.4.4 Using keys for addressing (103) for more information.

key definition
A <topicref> element that binds one or more key names to zero or more resources.

key reference
An attribute that references a key, such as @keyref or @conkeyref.

key space
A list of key definitions that are used to resolve key references.

effective key definition
The definition for a key within a key space that is used to resolve references to that key. A key might
have multiple definitions within a key space, but only one of those definitions is effective.

key scope
A map or section of a map that defines its own key space and serves as the resolution context for its
key references.

2.8 Map terminology

Certain terminology is used for DITA maps.

root map
The DITA map that is provided as input for a processor.

submap
A DITA map that is referenced with a @scope attribute that evaluates as "local". The value of the
scope attribute might be explicitly set, be defaulted, or cascade from another element.

peer map
A DITA map that is referenced with a @scope attribute that evaluates as "peer". The value of the
scope attribute might be explicitly set, be defaulted, or cascade from another element.

map branch
A <topicref> element or a specialization of <topicref>, along with any child elements and all
resources that are referenced by the original element or its children.

2.9 Other terminology

convenience elements
Specialized element types that are equivalent to base element types with certain attributes
configured.

user agent
Software that retrieves and presents web content for end users or is implemented using Web
technologies. User agents include web browsers, media players, and plug-ins, as well as operating
system shells and web-enabled consumer electronics.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 21 of 471

2.10 File extensions
DITA uses certain file extensions for topics, maps, and conditional processing profiles.

002 (384) Files that contain DITA content SHOULD use the following file extensions:

DITA topics
* . dita (preferred)
*.xml

DITA maps
*.ditamap

Conditional processing profiles
*.ditaval

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 22 of 471

3 Overview of DITA

The Darwin Information Typing Architecture (DITA) is an XML-based architecture for authoring, producing,
and delivering topic-oriented, information-typed content that can be reused and single-sourced in a
variety of ways. While DITA historically has been driven by the requirements of large-scale technical
documentation authoring, management, and delivery, it is a standard that is applicable to any kind of
publication or information that might be presented to readers, including interactive training and
educational materials, standards, reports, business documents, trade books, travel and nature guides,
and more.

DITA is designed for creating new document types and describing new information domains based on
existing types and domains. The process for creating new types and domains is called specialization.
Specialization enables the creation of specific, targeted XML grammars that can still use tools and design
rules that were developed for more general types and domains; this is similar to how classes in an object-
oriented system can inherit the methods of ancestor classes.

Because DITA topics are conforming XML documents, they can be readily viewed, edited, and validated
using standard XML tools, although realizing the full potential of DITA requires using DITA-aware tools.

Comment by Kristen J Eberlein on 03 June 2019

This section of the spec now contains material about topics, maps, and metadata that was previously
in the "DITA markup" section."

We need to carefully consider what of this content is appropriate. Some of it — information about map
elements and attributes, metadata — is duplicated elsewhere. If we think it is useful to have a high-level
overview here, we should mark it as non-normative — and point users to the normative coverage of the
topic.

In a parallel move, | think we'll need to move coverage of critical DITA attributes into a more prominent
place in the spec.

Disposition: Unassigned

3.1 Basic concepts

DITA has been designed to satisfy requirements for information typing, semantic markup, modularity,
reuse, interchange, and production of different deliverable forms from a single source. These topics
provide an overview of the key DITA features and facilities that serve to satisfy these requirements.

DITA topics
In DITA, a topic is the basic unit of authoring and reuse. All DITA topics have the same basic
structure: a title and, optionally, a body of content. Topics can be generic or more specialized,;
specialized topics represent more specific information types or semantic roles, for example,
<concept>, <task>, or <reference> See DITA topics (25) for more information.

DITA maps
DITA maps are documents that organize topics and other resources into structured collections of
information. DITA maps specify hierarchy and the relationships among the topics; they also provide
the contexts in which keys are defined and resolved. See DITA maps (30) for more information.

Information typing
Information typing is the practice of identifying types of topics, such as concept, reference, and task,
to clearly distinguish between different types of information. Topics that answer different reader
questions (How do 1? What is?) can be categorized with different information types. The base

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 23 of 471

information types provided by DITA specializations (for example, technical content, machine industry,
and learning and training) provide starter sets of information types that can be adopted immediately
by many technical and business-related organizations. See Information typing (27) for more
information.

DITA addressing
DITA provides two addressing mechanisms. DITA addresses either are direct URI-based addresses,
or they are indirect key-based addresses. Within DITA documents, individual elements are addressed
by unique identifiers specified on the @id attribute. DITA defines two fragment-identifier syntaxes;
one is the full fragment-identifier syntax, and the other is an abbreviated fragment-identifier syntax
that can be used when addressing non-topic elements from within the same topic. See DITA
addressing (93) for more information.

Content reuse
The DITA Qconref, Gconkeyref, @conrefend, and @conaction attributes provide mechanisms
for reusing content within DITA topics or maps. These mechanisms can be used both to pull and
push content. See Content reuse (139) for more information

Conditional processing
Conditional processing is the filtering or flagging of information based on processing-time criteria.
See Conditional processing (154) for more information.

Configuration
A document-type shell is an XML grammar file that specifies the elements and attributes that are
allowed in a DITA document. The document-type shell integrates structural modules, domain
modules, and element-configuration modules. In addition, a document-type shell specifies whether
and how topics can nest. See 8.2 Document-type configuration (182) for more information.

Specialization
The specialization feature of DITA allows for the creation of new element types and attributes that are
explicitly and formally derived from existing types. This facilitates interchange of conforming DITA
content and ensures a minimum level of common processing for all DITA content. It also allows
specialization-aware processors to add specialization-specific processing to existing base
processing. See Specialization (185) for more information.

Constraints
Constraint modules restrict content models or attribute lists for specific element types, remove certain
extension elements from an integrated domain module, or replace base element types with domain-
provided, extension element types. See Constraints (196) for more information.

3.2 Producing different deliverables from a single source

DITA is designed to enable the production of multiple deliverable formats from a single set of DITA
content. This means that many rendition details are specified neither in the DITA specification nor in the
DITA content; the rendition details are defined and controlled by the processors.

Like many XML-based applications for human-readable documentation, DITA supports the separation of
content from presentation. This is necessary when content is used in different contexts, since authors
cannot predict how or where the material that they author will be used. The following features and
mechanisms enable users to produce different deliverable formats from a single source:

DITA maps
Different DITA maps can be optimized for different delivery formats. For example, you might have a
book map for printed output and another DITA map to generate online help; each map uses the same
content set.

Specialization
The DITA specialization facility enables users to create XML elements that can provide appropriate
rendition distinctions. Because the use of specializations does not impede interchange or

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 24 of 471

interoperability, DITA users can safely create the specializations that are demanded by their local
delivery and rendition requirements, with a minimum of additional impact on the systems and
business processes that depend on or use the content. While general XML practices suggest that
element types should be semantic, specialization can be used to define element types that are purely
presentational in nature. The highlighting domain is an example of such a specialization.

Conditional processing
Conditional processing makes it possible to have a DITA topic or map that contains delivery-specific
content.

Content referencing
The conref mechanism makes it possible to construct delivery-specific maps or topics from a
combination of generic components and delivery-context-specific components.

Key referencing
The keyref mechanism makes it possible to have key words be displayed differently in different
deliverables. It also allows a single link to resolve to different targets in different deliverables.

@outputclass attribute
The Goutputclass attribute provides a mechanism whereby authors can indicate specific rendition
intent where necessary. Note that the DITA specification does not define any values for the
@outputclass attribute; the use of the Goutputclass attribute is processor specific.

While DITA is independent of any particular delivery format, it is a standard that supports the creation of
human-readable content. As such, it defines some fundamental document components including
paragraphs, lists, and tables. When there is a reasonable expectation that such basic document
components be rendered consistently, the DITA specification defines default or suggested renderings.

3.3 DITA topics

DITA topics are the basic units of DITA content and the basic units of reuse. Each topic contains a single
subject.

3.3.1 The topic as the basic unit of information

In DITA, a topic is the basic unit of authoring and reuse. All DITA topics have the same basic structure: a
titte and, optionally, a body of content. Topics can be generic or more specialized; specialized topics
represent more specific information types or semantic roles, for example, <concept>, <task>, or
<reference>

DITA topics consist of content units that can be as generic as sets of paragraphs and unordered lists or
as specific as sets of instructional steps in a procedure or cautions to be considered before a procedure is
performed. Content units in DITA are expressed using XML elements and can be conditionally processed
using metadata attributes.

Classically, a DITA topic is a titled unit of information that can be understood in isolation and used in
multiple contexts. It is short enough to address a single subject or answer a single question but long
enough to make sense on its own and be authored as a self-contained unit. However, DITA topics also
can be less self-contained units of information, such as topics that contain only titles and short
descriptions and serve primarily to organize subtopics or links or topics that are designed to be nested for
the purposes of information management, authoring convenience, or interchange.

DITA topics are used by reference from DITA maps. DITA maps enable topics to be organized in a
hierarchy for publication. Large units of content, such as complex reference documents or book chapters,
are created by nesting topic references in a DITA map. The same set of DITA topics can be used in any
number of maps.

DITA topics also can be used and published individually; for example, one can represent an entire
deliverable as a single DITA document that consists of a root topic and nested topics. This strategy can

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 25 of 471

accommodate the migration of legacy content that is not topic-oriented; it also can accommodate
information that is not meaningful outside the context of a parent topic. However, the power of DITA is
most fully realized by storing each DITA topic in a separate XML document and using DITA maps to
organize how topics are combined for delivery. This enables a clear separation between how topics are
authored and stored and how topics are organized for delivery.

3.3.2 The benefits of a topic-based architecture
Topics enable the development of usable and reusable content.

While DITA does not require the use of any particular writing practice, the DITA architecture is designed to
support authoring, managing, and processing of content that is designed to be reused. Although DITA
provides significant value even when reuse is not a primary requirement, the full value of DITA is realized
when content is authored with reuse in mind. To develop topic-based information means creating units of
standalone information that are meaningful with little or no surrounding context.

By organizing content into topics that are written to be reusable, authors can achieve several goals:

« Content is readable when accessed from an index or search, not just when read in sequence as
part of an extended narrative. Since most readers do not read technical and business-related
information from beginning to end, topic-oriented information design ensures that each unit of
information can be read independently.

« Content can be organized differently for online and print delivery. Authors can create task flows
and concept hierarchies for online delivery and create a print-oriented hierarchy to support a
narrative content flow.

« Content can be reused in different collections. Since a topic is written to support random access
(as by search), it should be understandable when included as part of various product deliverables.
Topics permit authors to refactor information as needed, including only the topics that apply to
each unique scenario.

« Content is more manageable in topic form whether managed as individual files in a traditional file
system or as objects in a content management system.

« Content authored in topics can be translated and updated more efficiently and less expensively
than information authored in larger or more sequential units.

» Content authored in topics can be filtered more efficiently, encouraging the assembly and
deployment of information subsets from shared information repositories.

Topics written for reuse should be small enough to provide opportunities for reuse but large enough to be
coherently authored and read. When each topic is written to address a single subject, authors can
organize a set of topics logically and achieve an acceptable narrative content flow.

3.3.3 Disciplined, topic-oriented writing

Topic-oriented writing is a disciplined approach to writing that emphasizes modularity and reuse of
concise units of information: topics. Well-designed DITA topics can be reused in many contexts, as long
as writers are careful to avoid unnecessary transitional text.

Conciseness and appropriateness
Readers who are trying to learn or do something quickly appreciate information that is written in a
structure that is easy to follow and contains only the information needed to complete that task or
grasp a fact. Recipes, encyclopedia entries, car repair procedures; all serve up a uniquely focused
unit of information. The topic contains everything required by the reader.

Locational independence
A well-designed topic is reusable in other contexts to the extent that it is context free, meaning that it
can be inserted into a new document without revision of its content. A context-free topic avoids
transitional text. Phrases like "As we considered earlier" or "Now that you have completed the initial
step" make little sense if a topic is reused in a new context in which the relationships are different or

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 26 of 471

no longer exist. A well-designed topic reads appropriately in any new context because the text does
not refer the reader outside the topic.

Navigational independence

Most print publications or web pages are a mixture of content and navigation. Internal links lead a
reader through a sequence of choices as he or she navigates through a website. DITA supports the
separation of navigation from content by assembling independent topics into DITA maps.
Nonetheless, writers might want to provide links within a topic to additional topics or external
resources. DITA does not prohibit such linking within individual topics. The DITA relationship table
enables links between topics and to external content. Since it is defined in the DITA map, it is
managed independently of the topic content.

Links in the content are best used for cross-references within a topic. Links from within a topic to
additional topics or external resources are best avoided because they limit reuse of the topic. To link
from a term or keyword to its definition, use the DITA keyref facility to avoid creating topic-to-topic
dependencies that are difficult to maintain. See Key-based addressing (100)

3.3.4 Information typing

Information typing is the practice of identifying types of topics, such as concept, reference, and task, to
clearly distinguish between different types of information. Topics that answer different reader questions
(How do I? What is?) can be categorized with different information types. The base information types
provided by DITA specializations (for example, technical content, machine industry, and learning and
training) provide starter sets of information types that can be adopted immediately by many technical and
business-related organizations.

Information typing has a long history of use in the technical documentation field to improve information
quality. It is based on extensive research and experience, including Robert Horn's Information Mapping
and Hughes Aircraft's STOP (Sequential Thematic Organization of Proposals) technique. Note that many
DITA topic types are not necessarily closely connected with traditional Information Mapping.

Information typing is a practice designed to keep documentation focused and modular, thus making it
clearer to readers, easier to search and navigate, and more suitable for reuse. Classifying information by
type helps authors perform the following tasks:

« Develop new information more consistently

« Ensure that the correct structure is used for closely related kinds of information (retrieval-oriented
structures like tables for reference information and simple sequences of steps for task
information)

« Avoid mixing content types, thereby losing reader focus

« Separate supporting concept and reference information from tasks, so that users can read the
supporting information if needed and ignore if it is not needed

« Eliminate unimportant or redundant detail

» Identify common and reusable subject matter

DITA currently defines a small set of well-established information types that reflects common practices in
certain business domains, for example, technical communication and instruction and assessment.
However, the set of possible information types is unbounded. Through the mechanism of specialization,
new information types can be defined as specializations of the base topic type (<topic>) or as
refinements of existing topics types, for example, <concept>, <task>, <reference>, Or
<learningContent>.

You need not use any of the currently-defined information types. However, where a currently-defined
information type matches the information type of your content, use the currently-defined information type,
either directly, or as a base for specialization. For example, for information that is procedural in nature,

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 27 of 471

use the task information type or a specialization of task. Consistent use of established information types
helps ensure smooth interchange and interoperability of DITA content.

3.3.5 Topic structure

All topics have the same basic structure, regardless of topic type: title, description or abstract, prolog,
body, related links, and nested topics.

All DITA topics must have an XML identifier (the @id attribute) and a title. The basic topic structure
consists of the following parts, some of which are optional:

Topic element
The topic element holds the required @id attribute and contains all other elements.

Title
The title contains the subject of the topic.

Alternate titles
Titles specifically for use in navigation or search. When not provided, the base title is used for all
contexts.

Short description or abstract
A short description of the topic or a longer abstract with an embedded short description. The short
description might be used both in topic content (as the first paragraph), in generated summaries that
include the topic, and in links to the topic. Alternatively, the abstract lets you create more complex
introductory content and uses an embedded short description element to define the part of the
abstract that is suitable for summaries and link previews.
While short descriptions are not required, they can make a dramatic difference to the usability of an
information set and should generally be provided for all topics.

Prolog
The prolog is the container for topic metadata, such as change history, audience, product, and so on.

Body
The topic body contains the topic content: paragraphs, lists, sections, and other content that the
information type permits.

Related links
Related links connect to other topics. When an author creates a link as part of a topic, the topic
becomes dependent on the other topic being available. To reduce dependencies between topics and
thereby increase the ability to reuse each topic, authors can use DITA maps to define and manage
links between topics, instead of embedding links directly in each related topic.

Nested topics
Topics can be defined inside other topics. However, nesting requires special care because it can
result in complex documents that are less usable and less reusable. Nesting might be appropriate for
information that is first converted from desktop publishing or word processing files or for topics that
are unusable independent from their parent or sibling topics.
The rules for topic nesting can be configured in a document-type shells. For example, the standard
DITA configuration for concept topics only allows nested concept topics. However, local configuration
of the concept topic type could allow other topic types to nest or disallow topic nesting entirely. In
addition, the @chunk attribute enables topics to be equally re-usable regardless of whether they are
separate or nested. The standard DITA configuration for ditabase document-type documents allows
unrestricted topic nesting and can be used for holding sets of otherwise unrelated topics that hold re-
usable content. It can also be used to convert DITA topics from non-DITA legacy source without first
determining how individual topics should be organized into separate XML documents.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 28 of 471

3.3.6 Topic content
The content of all topics, regardless of topic type, is built on the same common structures.

Topic body
The topic body contains all content except for that contained in the title or the short description/
abstract. The topic body can be constrained to remove specific elements from the content model; it
also can be specialized to add additional specialized elements to the content model. The topic body
can be generic while the topic title and prolog are specialized.

Sections and examples
The body of a topic might contain divisions, such as sections and examples. They might contain
block-level elements like titles and paragraphs and phrase-level elements like APl names or text. It is
recommend that sections have titles, whether they are entered directly into the <title> element or
rendered using a fixed or default title.
Either body divisions or untitled sections or examples can be used to delimit arbitrary structures
within a topic body. However, body divisions can nest, but sections and examples cannot contain
sections.

<bodydiv>
The <bodydiv> element enables the arbitrary grouping of content within the body of a topic for the
purpose of content reuse. The <bodydiv> element does not include a title. For content that requires
a title, use <section> or <example>.

<div>
The <div> element enables the arbitrary grouping of content within a topic. The <div> element
does not include a title. For content that requires a title, use <section> or <example> of, possibly,
<fig>.

Block-level elements
Paragraphs, lists, figures, and tables are types of "block" elements. As a class of content, they can
contain other blocks, phrases, or text, though the rules vary for each structure.

Phrases and keywords
Phrase level elements can contain markup to label parts of a paragraph or parts of a sentence as
having special semantic meaning or presentation characteristics, such as <uicontrol> or .
Phrases can usually contain other phrases and keywords as well as text. Keywords can only contain
text.

Images
Images can be inserted to display photographs, illustrations, screen captures, diagrams, and more.
At the phrase level, they can display trademark characters, icons, toolbar buttons, and so forth.

Multimedia
The <object> element enables authors to include multimedia, such as diagrams that can be rotated
and expanded. The <foreign> element enables authors to include media within topic content, for
example, SVG graphics, MathML equations, and so on.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 29 of 471

3.4 DITA maps

This topic collection contains information about DITA maps and the purposes that they serve. It also
includes high-level information about DITA map elements, attributes, and metadata.

3.4.1 Definition of DITA maps

DITA maps are documents that organize topics and other resources into structured collections of
information. DITA maps specify hierarchy and the relationships among the topics; they also provide the
contexts in which keys are defined and resolved.

Maps draw on a rich set of existing best practices and standards for defining information models, such as
hierarchical task analysis. They also support the definition of non-hierarchical relationships, such as
matrices and groups, which provide a set of capabilities that has similarities to Resource Description
Framework (RDF) and ISO topic maps.

DITA maps use <topicref> elements to reference DITA topics, DITA maps, and non-DITA resources,
for example, HTML and TXT files. The <topicref> elements can be nested or grouped to create
relationships among the referenced topics, maps, and non-DITA files; the <topicref> elements can be
organized into hierarchies in order to represent a specific order of navigation or presentation.

DITA maps impose an architecture on a set of topics. Information architects can use DITA maps to specify
what DITA topics are needed to support a given set of user goals and requirements; the sequential order
of the topics; and the relationships that exist among those topics. Because DITA maps provide this
context for topics, the topics themselves can be relatively context-free; they can be used and reused in
multiple different contexts.

DITA maps often represent a single deliverable, for example, a specific Web site, a printed publication, or
the online help for a product. DITA maps also can be subcomponents for a single deliverable, for
example, a DITA map might contain the content for a chapter in a printed publication or the
troubleshooting information for an online help system. The DITA specification provides specialized map
types; book maps represent printed publications, and subject scheme maps represent taxonomic or
ontological classifications. However, these map types are only a starter set of map types reflecting well-
defined requirements.

Comment by robander on 7 April 2023
Updated to remove "learning" as a type of map the spec provides.

With tech comm becoming a separate spec, is it really correct to say "The DITA specification
provides...book maps"? We could say "The DITA specifications provide" (plural)? That seems simpler
for an overview topic than trying to explain "This package has one specialization and another package
[out later] has book maps"

Disposition: Unassigned

DITA maps establish relationships through the nesting of <topicref> elements and the application of
the @collection-type attribute. Relationship tables also can be used to associate topics with each
other based on membership in the same row; for example, task topics can be associated with supporting
concept and reference topics by placing each group in cells of the same row. During processing, these
relationships can be rendered in different ways, although they typically result in lists of "Related topics" or
"For more information” links. Like many aspects of DITA, the details about how such linking relationships
are presented is determined by the DITA processor.

DITA maps also define keys and organize the contexts (key scopes) in which key references are
resolved.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 30 of 471

3.4.2 Purpose of DITA maps

DITA maps enable the scalable reuse of content across multiple contexts. They can be used by
information architects, writers, and publishers to plan, develop, and deliver content.

DITA maps support the following uses:

Defining an information architecture
Maps can be used to define the topics that are required for a particular audience, even before the
topics themselves exist. DITA maps can aggregate multiple topics for a single deliverable.

Defining what topics to build for a particular output
Maps reference topics that are included in output processing. Information architects, authors, and
publishers can use maps to specify a set of topics that are processed at the same time, instead of
processing each topic individually. In this way, a DITA map can serve as a manifest or bill of
materials.

Defining navigation
Maps can define the online navigation or table of contents for a deliverable.

Defining related links
Maps define relationships among the topics they reference. These relationships are defined by the
nesting of elements in the DITA map, relationship tables, and the use of elements on which the
@collection-type attribute is set. On output, these relationships might be expressed as related
links or the hierarchy of a table of contents (TOC).

Defining an authoring context
The DITA map can define the authoring framework, providing a starting point for authoring new topics
and integrating existing ones.

Defining keys and key scopes
Maps can define keys, which provide an indirect addressing mechanism that enhances portability of
content. The keys are defined by <topicref> elements or specializations of <topicref>
elements, such as <keydef>. The <keydef> element is a convenience element; it is a specialized
type of a <topicref> element with the following attributes:

* Arequired @keys attribute
* A Qprocessing-role attribute with a default value of "resource-only".

Maps also define the context or contexts for resolving key-based references, such as elements that
specify the @keyref or @conkeyref attribute. Elements within a map structure that specify a
@keyscope attribute create a new context for key reference resolution. Key references within such
elements are resolved against the set of effective key definitions for that scope.

Specialized maps can provide additional semantics beyond those of organization, linking, and indirection.
For example, the subjectScheme map specialization adds the semantics of taxonomy and ontology
definition.

3.4.3 DITA map attributes

DITA maps have unique attributes that are designed to control the way that relationships are interpreted
for different output purposes. In addition, DITA maps share many metadata and linking attributes with
DITA topics.

Comment by rodaande
We currently redefine a lot of attributes in this topic that are more comprehensively defined in the
element reference; we need to reconcile those that are defined differently and ideally reuse definitions.

Kris Eberlein, 28 September 2022

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 31 of 471

| alphabeticized the attributes in this topic. | also added them to draft comments in the definitions in the
"Attributes" topics, so that we could consider them side-by-side.

Disposition: Unassigned

DITA maps often encode structures that are specific to a particular medium or output, for example, Web
pages or a PDF document. Attributes, such as @deliveryTarget and @toc, are designed to help
processors interpret the DITA map for each kind of output.

Comment by Kristen J Eberlein on 04 July 2019

The following paragraph seems off ...

Disposition: Unassigned

Many of the following attributes are not available in DITA topics; individual topics, once separated from
the high-level structures and dependencies associated with a particular kind of output, should be entirely
reusable regardless of the intended output format.

@cascade

Specifies whether the default rules for the cascading of metadata attributes in a DITA map apply. The
following values are specified:

merge
Indicates that the metadata attributes cascade, and that the values of the metadata attributes
are additive. This is the processing default for the @cascade attribute.

nomerge
Indicates that the metadata attributes cascade, but that they are not additive for <topicref>
elements that specify a different value for a specific metadata attribute. If the cascading value for
an attribute is already merged based on multiple ancestor elements, that merged value
continues to cascade until a new value is encountered. That is, setting cascade="nomerge"
does not undo merging that took place on ancestor elements.

For more information, see 5.3.4.4 Example: How the cascade attribute affects attribute cascading
(76).

@chunk
Specifies that the processor generates an interim set of DITA topics that are used as the input for the
final processing. This can produce the following output results:

* Multi-topic files are transformed into smaller files, for example, individual HTML files for each
DITA topic.
< Individual DITA topics are combined into a single file.

Specifying a value for the @chunk attribute on a <map> element establishes chunking behavior that
applies to the entire map, unless overridden by @chunk attributes that are set on more specific
elements in the DITA map. For a detailed description of the @chunk attribute and its usage, see 5.4
Chunking (77).

@collection-type
The @Gcollection-type attribute specifies how the children of a <topicref> element relate to
their parent and to each other. This attribute, which is set on the parent element, typically is used by
processors to determine how to generate navigation links in the rendered topics. For example, a
@collection-type value of "sequence" indicates that children of the specifying <topicref>
element represent an ordered sequence of topics; processors might add numbers to the list of child

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 32 of 471

topics or generate next/previous links for online presentation. This attribute is available in topics on
the <linklist> and <1inkpool> elements, where it has the same behavior. Where the
@collection-type attribute is available on elements that cannot directly contain elements, the
behavior of the attribute is undefined.

@keys
Specifies one or more key names.

@keyscope
Defines a new scope for key definition and resolution, and gives the scope one or more names. For
more information about key scopes, see 6.4 Indirect key-based addressing (100).

@linking
By default, the relationships between the topics that are referenced in a map are reciprocal:

< Child topics link to parent topics and vice versa.

« Next and previous topics in a sequence link to each other.

« Topics in a family link to their sibling topics.

» Topics referenced in the table cells of the same row in a relationship table link to each other.

A topic referenced within a table cell does not (by default) link to other topics referenced in
the same table cell.

This behavior can be modified by using the @1inking attribute, which enables an author or

information architect to specify how a topic participates in a relationship. The following values are
valid:

linking="none"
Specifies that the topic does not exist in the map for the purposes of calculating links.

linking="sourceonly"
Specifies that the topic will link to its related topics but not vice versa.

linking="targetonly"
Specifies that the related topics will link to it but not vice versa.

linking="normal"
Default value. It specifies that linking will be reciprocal (the topic will link to related topics, and
they will link back to it).

Authors also can create links directly in a topic by using the <xref> or <1ink> elements, but in
most cases map-based linking is preferable, because links in topics create dependencies between
topics that can hinder reuse.

Note that while the relationships between the topics that are referenced in a map are reciprocal, the
relationships merely imply reciprocal links in generated output that includes links. The rendered
navigation links are a function of the presentation style that is determined by the processor.

@processing-role
Specifies whether the topic or map referenced is processed normally or treated as a resource that is
only included in order to resolve key or content references.

processing-role="normal"
The topic is a readable part of the information set. It is included in navigation and search results.
This is the default value for the <topicref> element.

processing-role="resource-only"
The topic is used only as a resource for processing. It is not included in navigation or search
results, nor is it rendered as a topic. This is the default value for the <keyde f> element.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 33 of 471

If the @processing-role attribute is not specified locally, the value cascades from the closest
element in the containment hierarchy.

@search
Specifies whether the topic is included in search indexes.

@toc
Specifies whether topics are excluded from navigation output, such as a Web site map or an online
table of contents. By default, <topicref> hierarchies are included in navigation output; relationship
tables are excluded.

Attributes in the list above are used exclusively or primarily in maps, but many important map attributes
are shared with elements in topics. DITA maps also use many of the following attributes that are used
with linking elements in DITA topics, such as <l1ink> and <xref>:

e Q@format
¢ @href

e (Q@keyref
* (@scope

* (@type
The following metadata and reuse attributes are used by both DITA maps and DITA topics:

* (Q@rev, @status, @importance

e Q@dir, @xml:lang, @translate

* @id, @conref, @conrefend, @conkeyref, @conaction

e Q@props and any attribute specialized from @props, including those integrated by default in the
OASIS-provided document-type shells: @audience, @deliveryTarget, @platform,
@product, @otherprops

e (@search

When new attributes are specialized from @props or @base as a domain, they can be incorporated into
both map and topic structural types.

3.5 DITA metadata

Metadata can be applied in both DITA topics and DITA maps. Metadata that is specified in DITA topics
can be supplemented or overridden by metadata that is assigned in a DITA map. This design facilitates
the reuse of DITA topics in different DITA maps and use-specific contexts.

DITA defines a core set of metadata elements to cover a variety of common scenarios. Because
metadata requirements vary so widely, it is expected that few implementations will use the full range of
these elements.

DITA also provides two generic elements, <data> and <othermeta>, which are intended for use when
the core metadata elements do not provide the correct semantic. In addition, <data> is especially useful
as a specialization base.

Requirements for rendering metadata vary widely. For that reason, any rendering of metadata in
published content is left up to implementations.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 34 of 471

3.5.1 Metadata elements

Metadata elements are available in both topics and DITA maps. This design enables authors and
information architects to use identical metadata markup in both topics and maps.

When used in maps, metadata elements are located in the <topicmeta> element. When used in topics,
metadata elements are located in the <prolog> element.

In general, specifying metadata in a <topicmeta> element that is a child of a <topicref> elementis
equivalent to specifying it in the <prolog> element of the referenced topic. The value of specifying the
metadata in the map is that the topic then can be reused in other maps where different metadata might
apply. Many items in the <topicmeta> element cascade to nested <topicref> elements within the
map. See 5.3.2 Reconciling topic and map metadata elements (71) for information about which
elements cascade.

3.5.2 Metadata attributes

Metadata attributes specify properties of the content that can be used to determine how the content is
processed. Specialized metadata attributes can be defined to enable specific business-processing needs,
such as semantic processing and data mining.

Metadata attributes typically are used for the following purposes:

« Filtering content based on the attribute values, for example, to suppress or publish profiled
content

« Flagging content based on the attribute values, for example, to highlight specific content on output

« Performing custom processing, for example, to extract business-critical data and store itin a
database

The base DITA vocabulary includes five specializations of the @props attribute as domains: @audience,
@deliveryTarget, @platform, @product, and Gotherprops. These five attributes are included in
all the map and topic document-type shells that are provided with the specification.

Metadata attributes fall into the following categories.

Architectural attributes
The @class, @DITAArchVersion, and @specializations attributes provide metadata about the
DITA source itself, such as what version of the grammar is used. These attributes are not intended
for use in authored content.

Filtering and flagging attributes

The @props attribute and its specializations are intended for filtering. This includes the five
specializations added to the OASIS document-type shells: @audience, @deliveryTarget,
@platform, @product, and Gotherprops.

These attributes plus the @rev attribute are intended for flagging.

Other metadata attributes
The @status and @importance attributes, many of the attributes available on the <ux-window>
element, as well as custom attributes specialized from @base, are intended for application-specific
behaviors. Such behaviors include aiding in search and retrieval, as well as controlling how a user
assistance window is rendered.

Translation and localization attributes
The @dir, @translate, and @xml: lang attributes are intended for use with translating and
localizing content.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 35 of 471

3.5.3 Metadata in maps and topics

Metadata can be specified in both maps and topics. In most cases, metadata in the map either
supplements or overrides metadata that is specified at the topic level.

Metadata can be specified by all the following mechanisms:

* Metadata elements that are located in the DITA map
« Specifying attributes on the <map> or <topicref> elements
* Metadata elements or attributes that are located in the DITA topic

Metadata elements and attributes in a map might apply to an individual topic, a set of topics, or globally
for the entire document. Most metadata elements authored within a <topicmeta> element associate
metadata with the parent element and its children. Because the topics in a branch of the hierarchy
typically have some common subjects or properties, this is a convenient mechanism to define metadata
for a set of topics.

Comment by rodaande on 8 Feb 2022

We should have a related link from this topic to the section on cascading; this is a conceptual topic
about metadata and should not repeat the processing rules, but reading this | immediately want to
know *which* elements cascade and how that works.

Disposition: Unassigned

When the same metadata element or attribute is specified in both a map and a topic, by default the value
in the map takes precedence. The assumption is that the map author has more knowledge of the reusing
context than the topic author.

3.5.4 Window metadata for user assistance

Some user assistance topics might need to be displayed in a specific window or viewport, and this
windowing metadata can be defined in the DITA map within the <ux-window> element.

In some help systems, a topic might need to be displayed in a window with a specific size or set of
features. For example, a help topic might need to be displayed immediately adjacent to the user interface
control that it supports in a window of a specific size that always remains on top, regardless of the focus
within the operating system.

Application metadata that is specified on the <ux-window> element is closely tied to that specific
application. It might be ignored when content is rendered for other uses.

Related reference

resourceid (292)

A resource ID is an identifier that is designed for applications that need to use their own identifier
scheme, such as context-sensitive help systems and databases.

ux-window (273)

A UX window specification is a collection of metadata for a window or viewport in which a user
assistance topic or web page can be displayed. The window or viewport can be referenced by the
<resourceid> element that is associated with a topic or <topicref> element.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 36 of 471

4 Accessibility and translation
Content needed

4.1 Accessibility

DITA has markup and features that enable producing output that is accessible by all audiences.

4.1.1 Handling accessibility in content and in processors

Accessibility requirements vary depending on how content is rendered. Making content accessible is work
that involves both content authors and the processors that render DITA content.

The foundation for accessible content is the Web Content Accessibility Guidelines (WCAG) from W3C.
While content formats and content authors might have unique or additional accessibility needs, the rules
outlined in the WCAG provide a reference point for considering how to create accessible content in DITA.

The guidelines fall into several categories:
General content guidelines

Many accessibility guidelines and best practices apply to all content. Such guidelines are generally
outside the scope of this specification.

For example, a guideline might recommend against multiple levels of nested unordered lists,
because such lists are difficult to navigate with a screen reader. As a general content standard, DITA
cannot prohibit such nesting. However, implementations can prevent such nesting through business
processes or rule-based processing such as Schematron.

Another common accessibility recommendation is to avoid flashing or flickering video content. The
DITA <video> element is a general mechanism for including video, and the content of that video is
outside the scope of this specification.

Markup guidelines

Other accessibility guidelines require the use of specific DITA markup. Such guidelines are
addressed in this specification.

For example, a requirement that images specify alternate text requires the use of the <alt> element
within the 

4.1.4.2 Example: Alternate text for an image map
In this scenario, alternate text is provided for an image map.

The following image shows "The Bronté Sisters”. This portrait is in the collection of the National Portrait
Gallery, London. The images of the three Bronté sisters (Charlotte, Emily, and Ann) are linked to their
Wikipedia pages.

1. Charlotte Bronté
2. Emily Bronté
3. Anne Bronté

The following code sample shows how the <imagemap> element is used to generate the above image
map, as well as how alternate text can be provided to ensure accessibility:

<imagemap id="bronte-sisters">
<image href="Bronte Sisters.jpg" id="bronte-sisters">
<alt>Portrait of "The Bronté Sisters"</alt>

</image>
<!-- Area #1: Charlotte Bronté -->
<area>

<shape>poly</shape>

<coords>408, 345, 410, 223, 360, 158, 369, 98, 363, 65, 355, 46,

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 40 of 471

https://en.wikipedia.org/wiki/Charlotte_Bront%C3%AB
https://en.wikipedia.org/wiki/Emily_Bront%C3%AB
https://en.wikipedia.org/wiki/Anne_Bront%C3%AB

337, 34, 318, 36, 313,

281, 103, 273, 116, 282, 141, 292, 148,
211, 245, 249, 227, 272, 224, 315, 234,

A6, 295, 58,

<xref format="html" scope="external"
href="https://en.wikipedia.org/wiki/Charlotte Bront%C3%AB">
Charlotte Bronté</xref>

</area>
<!-- Area #2: Emily Bronté -->
<area>

<shape>poly</shape>

<coords>228, 343, 211, 289,

102, 75, 98, 90, 103,
197, 100, 226, 86, 234
230, 349</coords>

203, 278, 194,
161, 157, 180, 138, 202, 112, 201, 69,
114, 118, 131,
, 85, 254, 121,

<xref format="html" scope="external"
href="https://en.wikipedia.org/wiki/Emily Bront$C3%AB">

Emily Bronté</xref>

</area>
<!-- Area #3: Anne Bronté -->
<area>

<shape>poly</shape>

<coords>0, 347, 1, 252, 29,

85, 231, 61, 252, 11§,

225, 24, 195,
110, 103, 119, 119, 137, 135, 154, 129,
317, 106, 329,

<xref format="html" scope="external"

href="https://en.wikipedia.org/wiki/Anne Bront$C3%AB">

Anne Bronté</xref>
</area>
</imagemap>

278, 95,

196, 252,

349</coords>

177, 178,
45, 114, 52,
154, 118,
123, 350,

76,

98, 224,

350</coords>

The <alt> element provides alternate text for the image as a whole, and the content of the <xref>

elements provide alternate text for each of the linked regions.

The following image shows the areas that are defined by the image map:

The following table lists the link targets and alternate text for each of the defined areas:

Area

Alternate text

Link target

1

Charlotte Bronté

Wikipedia entry for Charlotte Bronté

2

Emily Bronté

Wikipedia entry for Emily Bronté

Anne Bronté

Wikipeda entry for Anne Bronté

dita-2.0-specification
Standards Track Work Product

26 August 2024

Copyright © OASIS Open 2022. All Rights Reserved. Page 41 of 471

https://en.wikipedia.org/wiki/Charlotte_Bront%C3%AB
https://en.wikipedia.org/wiki/Emily_Bront%C3%AB
https://en.wikipedia.org/wiki/Anne_Bront%C3%AB

4.1.4.3 Example: Fallback information for multimedia content
In this scenario, fallback content is provided for systems that cannot display multimedia content.

The referenced video provides an image as fallback. If a system does not support video, it will display the
image video-not-available.png, which specifies its own alternate text.

<video height="300px"
loop="false"
muted="false"
width="400px">
<desc>A video that illustrates how to conduct a system health scan.</desc>
<fallback>
<image href="video-not-available.png">
<alt>This video cannot be displayed.</alt>
</image>
</fallback>
<video-poster keyref="demol-video-poster"
<media-source href="video.mp4" format="video/mp4d"/>
</video>

4.1.4.4 Example: Simple table with accessibility markup

In this scenario, the topic author uses a header row and the @keycol attribute to ensure that the table is
accessible

In the following code sample, the <sthead> element identifies the header row, and @keycol attribute
identifies the header column:

<simpletable frame="all" relcolwidth="1* 1*" keycol="1">
<sthead>
<stentry>Type of room</stentry>
<stentry>Price per day</stentry>
</sthead>
<strow>
<stentry>Single bed</stentry>
<stentry>$125.00</stentry>
</strow>
<strow>
<stentry>Two double beds</stentry>
<stentry>$150.00</stentry>
</strow>
<strow>
<stentry>Queen or king bed</stentry>
<stentry>$165.00</stentry>
</strow>
</simpletable>

This table might be rendered in the following way:

Type of room Price per night
Single bed $125.00

Two double beds $150.00
Queen or king bed $165.00

4.1.4.5 Example: Complex table with accessibility markup

In the following code sample, the table uses the <thead> element to identify header rows and the
@rowheader attribute to identify a header column. These header relationships can be used to

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 42 of 471

automatically create renderings of the table in other formats, such as HTML, that can be navigated using
a screen reader or other assistive technology.

<table frame="all" rowheader="firstcol">
<title>Sample of automated table accessibility</title>
<desc>Names are listed in the column cl. Points are listed in both data columns, with
expected points in column c2 and actual points in column c3.</desc>
<tgroup cols="3">
<colspec colname="cl"/>
<colspec colname="c2"/>
<colspec colname="c3"/>
<thead>
<row>
<entry morerows="1">Name</entry>
<entry namest="c2" nameend="c3">Points</entry>
</row>
<row>
<entry>Expected</entry>
<entry>Actual</entry>
</row>
</thead>
<tbody>
<row>
<entry>Mark</entry>
<entry>10,000</entry>
<entry>11,123.45</entry>
</row>
<row>
<entry>Peter</entry>
<entry>9,000</entry>
<entry>11,012.34</entry>
</row>
<row>
<entry>Cindy</entry>
<entry>10,000</entry>
<entry>10,987.64</entry>
</row>
</tbody>
</tgroup>
</table>

In this code sample, navigation information for assistive technology is derived from two sources:

* The <thead> element contains two rows, and indicates that each entry in those header rows is a
header cell for that column. This means that each body cell can be associated with the header cell
or cells above the column. For example, in the second body row, the entry "Peter" is associated
with the header "Name"; similarly, the entry "9,000" is associated with the headers "Expected" and
"Points".

* The @rowheader attribute that is specified on <table> indicates that the first column plays a
role as a row header. This means that the header cell in column one is associated with the other
body cells in the same row. For example, in the second body row, the entry "9,000" is associated
with the header "Peter".

As a result of these two sets of headers, a rendering of the table associates the entry "9,000" with three
headers: "Peter", "Expected", and "Points", thus making it fully navigable by a screen reader or other
assistive technology. When the user navigates to the cell containing "9,000", it can report the headers
"Peter", "Expected", and "Points" as the headers for that cell.

The output might be rendered in the following way:

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 43 of 471

Name Points l‘
Expected Actual L
Mark 10,000 11,123.45 /
Peter 9,000 11,012.34
10,000 10,987.64

The rendered HTML used by a screen reader might look as follows.

<table>
<caption>
Sample of automated table accessibility
Names are listed in the column cl. Points are listed in both data
columns,
with expected points in column c2 and actual points in column c3.
</caption>
<colgroup><col><col><col></colgroup>
<thead>
<tr>
<th id="source entry 1" rowspan="2">Name</th>
<th id="source entry 2" colspan="2">Points</th>
</tr>
<tr>
<th id="source entry 3">Expected</th>
<th id="source_ entry 4">Actual</th>
</tr>
</thead>
<tbody>
<tr>
<th scope="row" id="source entry 5" headers="source entry 1">Mark</th>
<td headers="source entry 5 source_ entry 2 source entry 3">10,000</td>
<td headers="source entry 5 source entry 2 source entry 4">11,123.45</td>
</tr>
<tr>
<th scope="row" id="source entry 8" headers="source entry 1">Peter</th>
<td headers="source entry 8 source entry 2 source entry 3">9,000</td>
<td headers="source entry 8 source entry 2 source entry 4">11,012.34</td>
</tr>
<tr>
<th scope="row" id="source entry 11" headers="source entry 1">Cindy</th>
<td headers="source entry 11 source entry 2 source entry 3">10,000</td>
<td headers="source entry 11 source entry 2 source entry 4">10,987.64</td>
</tr>
</tbody>
</table>

4.1.4.6 Example: Complex table with some manually-specified accessibility
markup
In some complex tables, the <thead> element and @rowheader attribute might not be enough to

support all accessibility needs. Assume that a table is designed so that names are listed across the top
row, instead of in the first column, with both the first and second columns also functioning as headers:

i
Name Mark Peter Cindy
Points | Expected 10,000 9,000 10,000
Actual 11,123.45 11,012.34 10,987.64
dita-2.0-specification 26 August 2024

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 44 of 471

Note The table in this example is not meant to illustrate a best practice; this specific example would
likely prove difficult to navigate using a screen reader even with proper header markup. This
example is only intended to illustrate the full range of manual accessibility markup that is
available should the need arise.

Here, the @rowheader attribute cannot be used, because it is only able to specify the first column as a
header column. In this case, the @scope attribute can be used to indicate that entries in the first and
second columns function as headers for the entire row (or row group, in the case of a cell that spans
more than one row).

The following code sample demonstrates the use of the @scope attribute to facilitate navigation of these
rows by a screen reader or other assistive technology. Note that the <thead> element is still used to
imply a header relationship with the names at the top of each column.

<table frame="all">
<title>Sample with two header columns</title>
<tgroup cols="5">
<colspec colname="cl"/>
<colspec colname="c2"/>
<colspec colname="c3"/>
<colspec colname="c4"/>
<colspec colname="c5"/>
<thead>
<row>
<entry namest="cl" nameend="c2">Name</entry>
<entry>Mark</entry>
<entry>Peter</entry>
<entry>Cindy</entry>
</row>
</thead>
<tbody>
<row>
<entry morerows="1" scope="rowgroup">Points</entry>
<entry scope="row">Expected</entry>
<entry>10,000</entry>
<entry>9,000</entry>
<entry>10,000</entry>
</row>
<row>
<entry scope="row">Actual</entry>
<entry>11,123.45</entry>
<entry>11,012.34</entry>
<entry>10,987.64</entry>
</row>
</tbody>
</tgroup>
</table>

The rendered HTML used by a screen reader might look as follows.

<table>
<caption>Sample with two header columns</caption>
<colgroup><col><col><col><col><col></colgroup>
<thead>
<tr>
<th id="source entry 1" colspan="2">Name</th>
<th id="source entry 2">Mark</th>
<th id="source_ entry 3">Peter</th>
<th id="source entry 4">Cindy</th>
</tr> T T
</thead>
<tbody>
<tr>
<th headers="source entry 1" rowspan="2" scope="rowgroup"><strong class="ph
b">Points</th> o
<th headers="source entry 1" scope="row"><strong class="ph b">Expected</th>
<td headers="source entry 2">10,000</td>

<td headers="source entry 3">9,000</td>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 45 of 471

<td headers="source entry 4">10,000</td>
</tr>
<tr>
<th headers="source entry 1" scope="row"><strong class="ph b">Actual</th>
<td headers="source entry 2">11,123.45</td>
<td headers="source entry 3">11,012.34</td>
<td headers="source _entry_ 4">10,987.64</td>
</tr>
</tbody>
</table>

4.1.4.7 Example: Complex table with manual accessibility markup

In extremely complex tables, such as those with a single header cell in the middle of the table, fine-
grained accessibility controls are available to explicitly associate any content cell with any header cell.
This might also be useful for cases where processors do not support implied accessibility relationships
that exist based on header markup such as <thead>.

In the following sample, header cells are identified using the @id attribute, which is referenced using the
@headers attribute on appropriate content cells. This makes all header relationships in the table explicit.
Note that this sample ignores the @scope attribute, which could be used to exercise manual control
without setting as many attribute values; it also ignores the fact that <thead> creates a header
relationship even when the @id and @headers attributes are not used.

<table frame="all">
<title>Sample with fully manual accessibility control</title>
<desc>Names are listed in the column cl. Points are listed in both data columns, with
expected points in column c2 and actual points in column c3.</desc>
<tgroup cols="3">
<colspec colname="cl"/>
<colspec colname="c2"/>
<colspec colname="c3"/>
<thead>
<row>
<entry morerows="1"> </entry>
<entry namest="c2" nameend="c3" id="pts">Points</entry>
</row>
<row>
<entry id="exp" headers="pts">Expected</entry>
<entry id="act" headers="pts">Actual</entry>
</row>
</thead>
<tbody>
<row>
<entry id="namel">Mark</entry>
<entry headers="namel exp pts">10,000</entry>
<entry headers="namel act pts">11,123.45</entry>
</row>
<row>
<entry id="name2">Peter</entry>
<entry headers="name2 exp pts">9,000</entry>
<entry headers="name2 act pts">11,012.34</entry>
</row>
<row>
<entry id="name3">Cindy</entry>
<entry headers="name3 exp pts">10,000</entry>
<entry headers="name3 act pts">10,987.64</entry>
</row>
</tbody>
</tgroup>
</table>

The output might be rendered in the following way:

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 46 of 471

]
Points }
Expected Actual {
Mark 10,000 11,123.45 Lo
Peter 9,000 11,012.34
Cindy 10,000 10,987.64 J

W o W N NP N Y oW VLN

The rendered HTML used by a screen reader might look as follows.

<table>
<caption>Sample with fully manual accessibility control
Names are listed in the column cl. Points are listed in both
data columns, with
expected points in column c2 and actual points in column c3.</caption>
<colgroup><col><col><col></colgroup>
<thead>
<tr>
<th id="entry 1" rowspan="2"> </th>
<th id="pts" colspan="2">Points</th>
</tr>
<tr>
<th id="exp" headers="pts">Expected</th>
<th id="act" headers="pts">Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td id="namel" headers="entry 1">Mark</td>
<td headers="namel pts exp">10,000</td>
<td headers="namel pts act">11,123.45</td>
</tr>
<tr>
<td id="name2" headers="entry 1">Peter</td>
<td headers="name2 pts exp">9,000</td>
<td headers="name2 pts act">11,012.34</td>
</tr>
<tr>
<td id="name3" headers="entry 1">Cindy</td>
<td headers="name3 pts exp">10,000</td>
<td headers="name3 pts act">10,987.64</td>
</tr>
</tbody>
</table>

4.2 Translation and localization

DITA has markup that facilitates translation and localization. This markup includes the @xml:1lang
attribute, the @dir attribute, and the @translate attribute.

4.2.1 The @xml:lang attribute

The @xm1 : 1ang attribute specifies the language and optional locale of the content that is contained in an
element. The @xml : 1ang attribute is described in the XML Recommendation.

Since the @xm1 : 1ang attribute is an inherent property of the XML document, it does not behave in the
same way as other DITA metadata attributes do.

Within topic and map documents, the @xm1 : 1ang attribute applies to the content and attributes that are
contained by the element on which it is specified. This means that it supplies a value for lower-level
elements in the containment hierarchy that do not supply their own value for the @xml : 1ang attribute.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 47 of 471

http://www.w3.org/TR/REC-xml/#sec-lang-tag

However, any such value is overridden when an @xml : lang attribute with a different value is specified on
lower-level elements in the containment hierarchy.

When the @xm1 : 1ang attribute is specified on a topic reference, it does not apply to the referenced
resource. This means that the value of the @xm1 : 1ang attribute on a topic reference (or the root element
of the map) does not automatically supply a default value for the referenced topic or DITA map.

For topic and map documents, if no value for the @xm1 : 1ang value is specified explicitly or on a higher-
level element in the containment hierarchy, a processor-determined default value is assumed.

4.2.1.1 Recommendations for the @xml:lang attribute
Specifying the @xm1 : 1ang attribute in the DITA source facilitates translation and helps ensure that

processors will handle content appropriately. Accordingly, this specification makes certain best-practices
recommendations for where the @xml : 1ang attribute should be set.

Setting the @xml : 1ang attribute in the source-language document facilitates the translation process.
Some translation tools do not support adding new markup to the document that is being translated, so if
the source language content does not set the @xm1 : 1ang attribute, it might be difficult or impossible for a
translator to add the @xm1 : 1ang attribute to the translated document.

In addition, setting the @xm1 : 1ang attribute in the DITA source ensures that processors handle content in
a language- and locale-appropriate way. If the @xm1 : 1ang attribute is not set, processors might assume
a default value which is inappropriate for the DITA content.

The following table outlines the recommended use of the @xm1 : 1ang attribute in topics and maps. These
recommendations ensure that DITA resources have an effective default language.

DITA resource Recommended use

DITA topic document that contains a single language Specify the @xm1 : 1ang attribute on the root element of
the document.

DITA topic document that contains more than one Specify the primary language and locale that applies to

language the topic on the highest-level element that contains

content. If part of a topic is written in a different
language, enclose that content in an element with the
@xml : 1ang attribute set appropriately. This applies to
both block and inline elements that use the alternate
language.

DITA map Specify the @xm1 : 1ang attribute on the root element of
the map. This applies both to the root map and any
submaps.

4.2.1.2 Processing expectations regarding the @xml:lang attribute

When the @xm1 : 1ang attribute is specified as recommended, a language for the content is clearly
indicated. However, when the @xm1 : 1ang attribute is not specified, processors might need to assign a
default value.

003 (384) If the root element of a map or a top-level topic has no value for the @xml: lang
attribute, a processor SHOULD assume a default value. The default value of the
processor can be either fixed, configurable, or derived from the content itself, such
as the @xm1 : 1ang attribute on the root map.

004 (384) When a @conref or @conkeyref attribute is used to include content from one
element into another, the processor MUST use the effective value of the

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 48 of 471

@xml : lang attribute from the referenced element. If the referenced element does
not have an explicit value for the @xml : 1ang attribute, the processor SHOULD use
the default value.

005 (384) Processors SHOULD render each element in a way that is appropriate for its
language as identified by the @xm1 : 1ang attribute.

4.2.1.3 Example: content reference and the @xml:lang attribute

This example outlines how processors determine the effective value of the @xm1 : 1ang attribute for
content that is referenced by the @conref or @conkeyref attribute.

In this scenario, a company has a notices topic that contains warnings in multiple languages. The notices
topic specifies an @xm1 : 1ang attribute of "en". However, it contains content that is reused from topics
that explicitly set the @xm1 : 1ang attribute to "fr" and "de".

The following code block shows the content of the DITA topic that contains the referencing elements:

Figure 3: Topic that contains the conrefs

<topic xml:lang="en" id="notices">

<title>NOTICES</title>

<shortdesc>Be sure to read all product safety information before using the product.</

shortdesc>

<body>
<note id="warning-english" conref="warnings-en.dita#warnings/general"/>
<note id="warning-french" conref="warnings-fr.dita#fwarnings/general" />
<note id="warning-german" conref="warnings-de.dita#warnings/general"/>
<!-- ... All supported languages for the product ... -->

</body>

</topic>

The following code blocks show the content of the topics that contains the referenced elements:

Figure 4: English warnings topic: warnings-en.dita

<topic id="warnings" xml:lang="en">

<title>Reusable warnings (English)</title>

<body>
<note id="general">General notice about using the product...</note>
<note id="water">Warning about using the product near water...</note>
<!-- Other reusable warnings -->

</body>

</topic>

Figure 5: French warnings topic: warnings-fr.dita

<topic id="warnings" xml:lang="fr">
<title>Reusable warnings (French)</title>
<body>
<note id="general"> (French translation of: General notice about using the product...)</note>
<note id="water"> (French translation of: Warning about using the product near water...)</
note>
<!-- Other reusable warnings -->
</body>
</topic>

Figure 6: German warnings topic: warnings-de.dita

<topic id="warnings" xml:lang="de">
<title>Reusable warnings (German)</title>
<body>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 49 of 471

<note id="general"> (German translation of: General notice about using the product...)</note>

<note id="water"> (German translation of: Warning about using the product near water...)</
note>

<!-- Other reusable warnings -->

</body>
</topic>

When the topic that contains the conrefed notes is processed, the following occurs:

* The <note> element with the @id attribute set to "warning-french" has an effective value for the
@xml : lang attribute of "fr".

e The <note> element with the @1d attribute set to "warning-german" has an effective value for the
@xml : lang attribute of "de".

In each case, the effective value of the @xm1 : 1ang attribute for the note is determined by the value of the
@xml : lang attribute that is specified on the topic that contains the referenced element, instead of the
value of the @xm1 : 1ang attribute that is specified on the notices topic that contains the referencing
elements.

4.2.2 The @dir attribute

The @dir attribute provides instructions to processors about how bidirectional text is rendered.
The @dir attribute identifies or overrides the text directionality. The following values are valid:

Iro
Indicates an override of the Unicode Bidirectional Algorithm, forcing the element into left-to-right
mode.

Itr
Indicates left-to-right.

rlo
Indicates an override of the Unicode Bidirectional Algorithm, forcing the element into right-to-left
mode.

rtl
Indicates right-to-left.

-dita-use-conref-target
See 7.3.6 Using the -dita-use-conref-target value (149) for more information.

4.2.2.1 The Unicode Bidirectional Algorithm

The Unicode Bidirectional Algorithm plays a critical role in ensuring that bidirectional text is correctly
rendered.

Bidirectional text is text that contains text in both text directionalities, right-to-left (RTL) and left-to-right
(LTR). Common examples of bidirectional text include the following:

e Documents in RTL languages such as Arabic, Hebrew, Farsi, Urdu, and Yiddish that include
numerics or embedded sections of LTR text

« Documents that contain text in both LTR and RLT languages, for example, a topic that lists the
names of a movie in multiple languages

The Unicode Bidirectional Algorithm specifies how text should be rendered for a given language. For
more information about the Unicode Bidirectional Algorithm, see the following resources:

* Unicode Bidirectional Algorithm, Unicode Standard Annex #9
» Specifying the direction of text and tables: the dir attribute, HTML 4.01 Specification

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 50 of 471

https://www.unicode.org/reports/tr9/
https://www.w3.org/TR/html4/struct/dirlang.html#h-8.2

* Inline markup and bidirectional text in HTML, W3C internationalization article
e XHTML Bi-directional Text Attribute Module, XHTML 2.0 W3C Working Draft 22

4.2.2.2 Recommended usage of the @dir attribute
Typically, processors that fully support the Unicode Bidirectional Algorithm handle bidirectional text

without the need to specify directionality in the DITA source, if the @xm1 : 1ang attribute is specified on the

highest-level element.
The need to specify the @dir attribute primarily occurs in the following situations:

« Processors that do not fully support the Unicode Bidirectional Algorithm
« Documents that contain bidirectional text and characters with neutral bidirectionality

For the above situations, we recommend that DITA source documents, in addition to specifying the
@xml : lang attribute, also specify the @dir attribute on the highest-level element that is necessary.

4.2.2.3 Processing expectations regarding the Unicode Bidirectional Algorithm
Processor support for the Unicode Bidirectional Algorithm is critical.

006 (384) DITA processors SHOULD fully support the Unicode Bidirectional Algorithm. This
ensures that processors can implement the script and directionality for each
language that is used in a document.

4.2.3 The @translate attribute

The @translate attribute provides information about whether the content of an element should be
translated.

The following values are valid: "yes", "no", and "-dita-use-conref-target".

A few elements have the @translate attribute set by default to "no". These elements include <draft-
comment> and <required-cleanup>, all elements that are designed to hold content that is not
intended for publication.

The non-normative appendix, F Element-by-element recommendations for translators (443), includes
information on whether the element is block or inline, whether the element contents are likely to be
suitable for translation, and whether the element has attributes whose values might need translation.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 51 of 471

https://www.w3.org/International/articles/inline-bidi-markup/
https://www.w3.org/TR/2004/WD-xhtml2-20040722/mod-bidi.html

5 DITA map processing

Introduction to this chapter to be written later, when content is more stable.

5.1 DITA maps and their usage

New topic cluster to hold normative architectural content about DITA maps. Currently holds notes about
material that we intend to cover in the new topic cluster.

"linking".)"

Disposition: Unassigned

Comment by Kristen J Eberlein on 02 December 2021
Zoe made the following comment during review A:

"Why are we talking about hierarchical links when discussing rendering expectations for related-links?
I'm not sure this is the right location for this information. However, I'm not sure where that information
is. | was trying to figure out where it's spelled out how parent/child links are 'expected' to be rendered
and | didn't have luck finding it (partially because | went cross-eyed looking at the 104 references to

Can we please add a related link [from the related-links topic] to the related-links section of the spec?

Topical areas

 How <topicref> elements establish hierarchies including parent/child relationships and next/

previous relationships.
* Map-group elements

— Role as convenience elements—in most (all?) cases, the same function can be
accomplished with base elements. For example, <topichead> is effectively no different
than <topicref> with nothing but a title.

— Special role of <topicgroup>, which does not contribute to hierarchy

« How relationship tables establish linking relationships between topic references
* Meaning of titles (and navigation titles) on maps, submaps, mapgroup elements, and relationship

tables

« Link relationships created by attributes and nesting in DITA maps

Current topics with applicable content

Topic

Applicable content

3.4.5.1 Example: DITA map that
references a subordinate map

Resolution of a submap.

3.4.5.2 Example: DITA map with a
simple relationship table

How links are generated from a relationship table; how processors might
represent a relationship table.

3.4.5.3 Example: How the
@collection-type and
@linking determine links

Effect of Gcollection-type and @1inking attributes on generated links.

6.1 Navigation

Container topic; incorporate into new "DITA maps and their usage" cluster.

dita-2.0-specification
Standards Track Work Product

26 August 2024
Copyright © OASIS Open 2022. All Rights Reserved. Page 52 of 471

Topic Applicable content

6.1.1 Table of contents All content is applicable and needs to be incorporated into the new "DITA
maps and their usage" cluster — Closest thing we currently have to a topic
about how maps create hierarchies.

9.3.1.1 <map> Relationships between topics created by map hierarchy or @collection-
type attribute; role of titles, especially in submaps.

9.3.1.2 <topicref> Role of <topicref> nesting in creating containment hierarchies and
parent-child relationships.

9.3.1.6 <reltable> Relationship table titles — Processing expectations for relationship tables
(not rendered, used to generate links) — “Within a map tree, the effective
relationship table is the union of all relationship tables in the map.” — How a
DITA-aware tool might represent the <reltable> element graphically.

9.3.1.10 <relcolspec> How labels for related links from a relationship table are generated.

9.3.2.3 <mapref> “The hierarchy of the referenced map is merged into the container map at
the position of the reference, and the relationship tables of the child map are
added to the parent map.”

9.3.2.4 <topicgroup> How processors handle navigation titles within <topicgroup> elements.
9.8.13.10 The @format attribute How processors determine the value of the @ format attribute when it is not
explicitly set.

Possible new topics

+ DITA maps

« Relationship tables

« Creating navigational hierarchies
» Defining links between resources

5.1.1 Imposing roles when referencing a map

When specialized <topicref> elements reference a map, they might imply a semantic role for the
referenced content. The @impose-role attribute provides a mechanism to declare that such references
impose their original role on referenced content.

In many cases the <topicref> element is specialized in order to create a specific role for the reference.
For example, the <keydef> element creates a new role for the reference, but does not create a role for
the target of the reference. In other cases, the element is specialized to create a role for the target of the
reference. For example, in the Bookmap specialization from the DITA Technical Communication
specializations, the <chapter> element creates a role for the target of the reference: it declares that the
referenced content is a chapter in the context of this map.

The declaration of roles can be harder to follow when the target of a reference is a map or branch of a
map. In such cases, a <topicref> element can reference a map, which in turn references content.
When resolving those references, processors need to know which roles created by the <topicref>
elements need to be preserved for the content.

For example, assume a <setupProject> element that is specialized from <topicref> indicates that
the referenced content plays the "setup a project" role in a publication. This might result in special
formatting or generated headings when the content is rendered. If that element refers to a map instead of
a topic, that specialized role still needs to be passed on to topics in the referenced map - regardless of
what <topicref> elements might be used in that referenced map.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 53 of 471

The @impose-role attribute provides a way for specialized elements to declare whether processors
should use this behavior. This attribute is only evaluated when a <topicref> element refers to a map or
branch of a map. In that case, it indicates whether the element provides a role for content that should be
passed on to content in the referenced map.

The role created by a <topicref> is reflected by the @class hierarchy of the element. Processors that
need to do something with the role do it based on that @class attribute. In the <setupProject>
example above, that might be a @class attribute like "- map/topicref taskmap/setupProject
". Processors working with the reference know to render the referenced content based on that value.
When <setupProject> instead pulls in content from another map, processors need to preserve that
intent. Effectively, they need to preserve awareness of that @class attribute value for topics that are
indirectly referenced through the other map.

Specialized topic references achieve this behavior by setting up a default value for the @ impose-role
attribute on the new element: impose-role="impose".

When a role is imposed in this manner, it does not apply to all content referenced by the element. If a
<topicref> refers to a branch of a map, the role is imposed only on the root element of that branch. If a
<topicref> refers to an entire map, the role is imposed only on the highest-level topic references within
that map. The role does not cascade to other nested referencs within the map. For example, if a
<chapter> element applied that role to every reference in another map, that map would be made up
only of chapters nested within chapters.

For elements that do not create a role for the referenced content, the @impose-role attribute is defined
with a default value indicating that the target of the reference keeps its original role: impose-
role="keeptarget". For example, the <mapref> element is a convenience element used to simplify
references to other maps. It does not force the content in other maps to be treated as <mapref> - no
special role is created for the referenced content. For this reason, it is defined in the grammar file with a
fixed value of "keeptarget".

007 (384) In some cases, preserving the role of a referencing element might result in out-of-
context content. For example, a <chapter> element in one bookmap could pull in
a <part> element from another bookmap, where that referenced <part> also
contains nested <chapter> elements. Treating the <part> element as a
<chapter> will result in a chapter that nests other chapters, which is not valid in
bookmap and might not be understandable by processors. The result is
implementation specific. Processors MAY choose to treat this as an error, issue a
warning, or simply assign new roles to the problematic elements.

Defining a fixed role for a specialized element

In the Bookmap specialization from the OASIS DITA Technical Communications specializations, the
<chapter> element creates a role for the referenced topic. In many contexts (such as a PDF version of
the map), this will result in special formatting that identifies the topic as the start of a chapter.

When a chapter element refers to another map, topic references in that other map need to be treated as
chapters in order to retain the structure of the book. The @impose-role attribute is set to a fixed value
of "impose", which lets processors know that the role needs to be preserved for content in the other map.

In an RNG grammarr file, this default value can be set as follows:

<optional>
<attribute name="impose-role" a:defaultValue="keeptarget">
<value>keeptarget</value>
</attribute>
</optional>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 54 of 471

In a DTD grammar file, this default value can be set as follows:

impose-role
(impose)
'impose’

With these fixed values, a <chapter> element that refers to a map will impose the role of "chapter" as
expected.

Imposing a role on a branch of a map

In this scenario, a specialized <chapter> element refers to a branch of another map. The chapter
element does not need to set the @impose-role attribute directly, because it is defined with a default
value in the XML grammar files. The element itself refers to a specific branch of the map, setting the
@format attribute to indicate this is a map reference:

<bookmap>
<!-- ... title, front matter, and other chapters -->
<chapter href="reusemap.ditamap#examplebranch" format="ditamap"/>
<!-- additional content -->

</bookmap>

The referenced map contains that branch along with other content:

<map>
<title>Reusable map branches</title>
<topicref> <!-- ... --> </topicref>

<topicref href="parent.dita" id="examplebranch">
<topicref href="childl.dita"/>
<topicref href="child2.dita">

<!-- more children -->
</topicref>
</topicref>
<!-- ... more reusable branches -->
</map>

Because the <chapter> element is defined with a fixed value of "impose" for the @impose-role
attribute, processors will impose the "chapter" role on the reference to parent.dita at the root of the
referenced branch. The "chapter” role is not imposed on the child topics in that branch. While processors
do not need to literally resolve the content in a normal map, the effective result is similar to this merged
map:

<bookmap>
<!-- ... title, front matter, and other chapters -->
<chapter href="parent.dita">
<topicref href="childl.dita"/>
<topicref href="child2.dita">
<!-- more children -->
</topicref>
</chapter>
<!-- additional content -->
</bookmap>

Imposing a role on a referenced map

In this scenario, a specialized <chapter> element refers to an entire submap. The chapter element does
not need to set the Rimpose-role attribute directly, because it is defined with a default value in the XML
grammar files. The element itself sets the @ format attribute to indicate this is a map reference:

<bookmap>
<!-- ... title, front matter, and other chapters -->
<chapter href="nestedmap.ditamap" format="ditamap"/>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 55 of 471

<!-- additional content -->
</bookmap>

The referenced map contains three branches as children of the root <map> element;

<map>
<title>Reusable map branches</title>
<topicref href="branchl.dita"> <!-- ... --> </topicref>
<topicref href="branch2.dita">
<topicref href="childl.dita"/>
<topicref href="child2.dita">

<!-- more children -->
</topicref>
</topicref>
<topicref href="branch3.dita"> <!-- ... --> </topicref>
</map>

Because the <chapter> element is defined with a fixed value of "impose" for the @impose-role
attribute, processors will impose the "chapter” role on the highest-level references within the nested map.
This means the processors imposes the role of "chapter” on all three branches in the nested map. As with
the previous example, the "chapter” role is not imposed on the child topics in each branch. While
processors do not need to literally resolve the content in a normal map, the effective result is similar to
this merged map:

<bookmap>
<!-- ... title, front matter, and other chapters -->
<chapter href="branchl.dita"> <!-- ... --> </chapter>

<chapter href="branch2.dita">
<topicref href="childl.dita"/>
<topicref href="child2.dita">

<!-- more children -->
</topicref>
</chapter>
<chapter href="branch3.dita"> <!-- ... --> </chapter>
<!-- additional content -->
</bookmap>

5.1.1.1 Example: How <topicref> roles are imposed on referenced maps
In this scenario, a specialized <topicref> element references content in another map.

Consider the scenario of a <chapter> element from the Bookmap specialization that references a DITA
map. This scenario could take several forms:

Referenced map contains a single top-level <topicref> element
The entire branch functions as if it were included in the bookmap. The "chapter" role is imposed on
the branch, with the result that the top-level <topicref> elementis processed as if it were the
<chapter> element.

Referenced map contains multiple top-level <topicref> elements
The "chapter" role is imposed on each top-level element in the referenced map. Each top-level
<topicref> elementis processed as if it were a <chapter> element.

Referenced map contains a single <appendix> element
The "chapter” role is imposed on the <appendix> element, which is processed as it were a
<chapter> element.

Referenced map contains a single <part> element, with nested <chapter> elements
The "chapter" role is imposed on the <part> element, which is processed as it were a <chapter>
element. Nested <chapter> elements might not be understandable by processors, which can treat
this as an error or recover as they are able.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 56 of 471

<chapter> element references a single <topicref> element rather than a map
The "chapter” role is imposed on the referenced <topicref> element, which is processed as if it
were a <chapter> element.

5.1.2 Examples of DITA maps

This section of the specification contains simple examples of DITA maps. The examples illustrate a few of
the ways that DITA maps are used.

5.1.2.1 Example: DITA map that references a subordinate map

This example illustrates how one map can reference a subordinate map using either <mapref> or the
basic <topicref> element.

The following code sample illustrates how a DITA map can use the specialized <mapref> element to
reference another DITA map:

<map>
<title>DITA work at OASIS</title>
<topicref href="ocasis-dita-technical-committees.dita">
<topicref href="dita technical committee.dita"/>
<topicref href="dita adoption technical committee.dita"/>
</topicref>
<mapref href="oasis-processes.ditamap"/>
oo 00 ==
</map>

The <mapref> element is a specialized <topicref> intended to make it easier to reference another
map; use of <mapref> is not required for this task. This map also could be tagged in the following way:

<map>
<title>DITA work at OASIS</title>
<topicref href="oasis-dita-technical-committees.dita">
<topicref href="dita technical committee.dita"/>
<topicref href="dita adoption technical committee.dita"/>
</topicref>
<topicref href="oasis-processes.ditamap" format="ditamap"/>
Rle= 500 ==2
</map>

With either of the above examples, during processing, the map is resolved in the following way:

<map>
<title>DITA work at OASIS</title>
<topicref href="oasis-dita-technical-committees.dita">
<topicref href="dita technical committee.dita"/>
<topicref href="dita adoption technical committee.dita"/>
</topicref>
<!-- Contents of the oasis-processes.ditamap file -->
<topicref href="oasis-processes.dita">
<l—= ... ——>
</topicref>
Rle= 500 ==2
</map>

5.1.2.2 Example: DITA map with a simple relationship table

This example illustrates how to interpret a basic three-column relationship table used to maintain links
between concept, task, and reference material.

The following example contains the markup for a simple relationship table:

<map>
K== (00 ==>
dita-2.0-specification 26 August 2024

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 57 of 471

<reltable>
<relheader>
<relcolspec type="concept"/>
<relcolspec type="task"/>
<relcolspec type="reference"/>
</relheader>
<relrow>
<relcell>
<topicref href="A.dita"/>
</relcell>
<relcell>
<topicref href="B.dita"/>
</relcell>
<relcell>
<topicref href="Cl.dita"/>
<topicref href="C2.dita"/>
</relcell>
</relrow>
</reltable>
</map>

A DITA-aware tool might represent the relationship table graphically:

type="concept" type="task" type="reference"
A B c1
Cc2

When the output is generated, the topics contain the following linkage:

A

Linksto B, C1, and C2
B

Links to A, C1, and C2
C1,C2

Links to A and B

5.1.2.3 Example: How the @collection-type and @linking attributes determine
links

In this scenario, a simple map establishes basic hierarchical and relationship table links. The
@collection-type and @1inking attributes are then added to modify how links are generated.

The following example illustrates how linkage is defined in a DITA map:

Figure 7: Simple linking example

<topicref href="A.dita" collection-type="sequence">
<topicref href="Al.dita"/>
<topicref href="A2.dita"/>
</topicref>
<reltable>
<relrow>
<relcell><topicref href="A.dita"/></relcell>
<relcell><topicref href="B.dita"/></relcell>
</relrow>
</reltable>

When the output is generated, the topics contain the following linkage. Sequential (next/previous) links
between Al and A2 are present because of the @collection-type attribute on the parent:

A
Links to Al, A2 as children

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 58 of 471

Links to B as related

Al
Links to A as a parent
Links to A2 as next in the sequence

A2
Links to A as a parent
Links to Al as previous in the sequence

B
Links to A as related

The following example illustrates how setting the @1inking attribute can change the default behavior:

Figure 8: Linking example with the @linking attribute

<topicref href="A.dita" collection-type="sequence">
<topicref href="B.dita" linking="none"/>
<topicref href="Al.dita"/>
<topicref href="A2.dita"/>
</topicref>
<reltable>
<relrow>
<relcell><topicref href="A.dita"/></relcell>
<relcell linking="sourceonly"><topicref href="B.dita"/></relcell>
</relrow>
</reltable>

When the output is generated, the topics contain the following linkage:

A
Links to A1, A2 as children
Does not link to B as a child or related topic

Al
Links to A as a parent
Links to A2 as next in the sequence
Does not link to B as previous in the sequence

A2
Links to A as a parent
Links to Al as previous in the sequence

Links to A as a related topic

5.2 Subject scheme maps and their usage

Subject scheme maps can be used to define controlled values and subject definitions. The controlled
values can be bound to attributes, as well as element and attribute pairs. The subject definitions can
contain metadata and provide links to more detailed information; they can be used to classify content and

provide semantics that can be used in taxonomies and ontologies.

26 August 2024

008 (384) A DITA map can reference a subject scheme map by using a <mapref> element.
Processors also MAY provide parameters by which subject scheme maps are
referenced.

dita-2.0-specification

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved.

Page 59 of 471

5.2.1 Subject scheme maps
Subject scheme maps use key definitions to define collections of controlled values and subject definitions.

Controlled values are tokens that can be used as values for attributes. For example, the Qaudience
attribute can take a value that identifies the users that are associated with a particular product. Typical
values for a medical-equipment product might include "therapist", "oncologist", "physicist", and
“"radiologist”. In a subject scheme map, an information architect can define a list of these values for the
@audience attribute. An authoring tool can then provide a pick list for values for the attribute and
generate a warning if an author attempts to specify a value that is not one of the controlled values.

Controlled values can also be used to select content for filtering and flagging at build time.

Subject definitions are classifications and sub-classifications that compose a tree. Subject definitions
provide semantics that can be used in conjunction with taxonomies and ontologies.

Key references to controlled values are resolved to a key definition using the same precedence rules as
apply to any other key. However, once a key is resolved to a controlled value, that key reference does not
typically result in links or generated text.

Comment by Kristen J Eberlein on 14 December 2021
Adding content from DITAweb review D:

Comment from Stan Doherty: FWIW -- | do not understand what the second sentence ["However, omce
a key is resolved ... "] means.

Comment from Kris Eberlein: Quite simply, that key references resolved within a subjectScheme map
do NOT generate variable text or produce links. Within the context of a subjectScheme map, the key
references provide bindings or associations with subjects.

Comment from Robert Anderson: | think the root of this problem / this misunderstanding is the poor
design choice of using the same keys/keyref attribute for Subject Schemes as we do for normal
linking / variable text. We had an item in the 2.0 queue to completely redesign that, but never had
anyone with the time / energy to work on it (it would have been a big change).

The problem here is that we have to explain "These don't work like normal keys, and you shouldn't use
them in links and expect them to resolve as text or links" -- in a way that is clear, accurate, and short
enough that it actually gets read. So, | think we need some work on this paragraph.

Disposition: Unassigned

5.2.2 Defining controlled values for attributes
Subject scheme maps can define controlled values for DITA attributes without having to define

specializations or constraints. The list of available values can be modified quickly to adapt to new
situations.

Each controlled value is defined using a <subjectdef> element, which is a specialization of the
<topicref> element. The <subjectdef> element is used to define both a subject category and a list
of controlled values. The parent <subjectdef> element defines the category, and the children
<subjectdef> elements define the controlled values.

The subject definitions can include additional information within a <topicmeta> element to clarify the
meaning of a value:

e A<navtitle> (ora<titlealt> elementwitha @title-role of navigation) can provide a
more readable name for the controlled value.
* The <shortdesc> element can provide a definition.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 60 of 471

In addition, the <subjectdef> element can reference a more detailed definition of the subject, for
example, another DITA topic or an external resource.

009 (385) The following behavior is expected of processors in regard to subject scheme
maps:

* Authoring tools SHOULD use these lists of controlled values to provide lists
from which authors can select values when they specify attribute values.

* Authoring tools MAY give an organization a list of readable labels, a
hierarchy of values to simplify selection, and a shared definition of the
value.

» Authoring tools MAY support accessing and displaying the content of the
subject definition resource in order to provide users with a detailed
explanation of the subject.

Example: Controlled values that provide additional information about the subject

The following code sample illustrates how a subject definition can provide a richer level of information
about a controlled value:

<subjectdef keys="terminology" href="https://www.oasis-open.org/policies-guidelines/keyword-
guidelines">
<subjectdef keys="rfc2119" href="rfc-2119.dita">
<topicmeta>
<navtitle>RFC-2119 terminology</navtitle>
<shortdesc>The normative terminology that the DITA TC uses for the DITA specification</
shortdesc>
</topicmeta>
</subjectdef>
<subjectdef keys="iso" href="iso-terminology.dita">
<topicmeta>
<navtitle>ISO keywords</navtitle>
<shortdesc>The normative terminology used by some other OASIS technical committees
</shortdesc>
</topicmeta>
</subjectdef>
</subjectdef>

The content of the <navtitle> and <shortdesc> elements provide additional information that a
processor might display to users as they select attribute values or classify content. The resources
referenced by the @href attributes provide even more detailed information. A processor might render
expandable links as part of a user interface that implements a progressive disclosure strategy, or an
authoring tool might include the navigation title and short description in a window where the user selects a
controlled value.

5.2.3 Binding controlled values to an attribute

The controlled values defined in a subject scheme map can be bound to an attribute or an element and
attribute pair. This affects the expected behavior for processors and authoring tools.

The <enumerationdef> element binds the set of controlled values to an attribute. Valid attribute values
are those that are defined in the set of controlled values. Invalid attribute values are those that are not
defined in the set of controlled values. If an enumeration specifies an empty <subjectdef> element that
does not reference a set of controlled values, no value is valid for the attribute. An enumeration can also
specify an optional default value by using the <defaultSubject> element.

010 (385) If an enumeration is bound, processors SHOULD validate attribute values against
the controlled values that are defined in the subject scheme map. For authoring
tools, this validation prevents users from entering misspelled or undefined values.
Recovery from validation errors is implementation specific.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 61 of 471

The default attribute values that are specified in a subject scheme map apply only if a value is not
otherwise specified in the DITA source or as a default value by the XML grammar.

Example: Binding a list of controlled values to the @audience attribute

The following code sample illustrates the use of the <subjectdef> element to define controlled values
for types of users. It also binds the controlled values to the @Gaudience attribute:

<subjectScheme>
<!-- DEFINE TYPES OF USERS -->
<subjectdef keys="users">
<subjectdef keys="therapist"/>
<subjectdef keys="oncologist"/>
<subjectdef keys="physicist"/>
<subjectdef keys="radiologist"/>
</subjectdef>
<!-- BIND THE SUBJECT TO THE @AUDIENCE ATTRIBUTE
This restricts the @audience attribute to the following
values: therapist, oncologist, physicist, radiologist -->
<enumerationdef>
<attributedef name="audience"/>
<subjectdef keyref="users"/>
</enumerationdef>
</subjectScheme>

When the above subject scheme map is used, the only valid values for the Qaudience attribute are
"therapist”, "oncologist", "physicist", and "radiologist". Note that "users" is not a valid value for the
@audience attribute, as it merely identifies the parent or container subject.

Example: Binding an attribute to an empty set
The following code sample specifies that there are no valid values for the Qoutputclass attribute:

<subjectScheme>
<enumerationdef>
<attributedef name="outputclass"/>
<subjectdef/>
</enumerationdef>
</subjectScheme>

Authors will not be able to specify the Routputclass attribute on an element.

5.2.4 Processing controlled attribute values

An enumeration of controlled values can be defined with hierarchical levels by nesting subject definitions.
This affects how processors perform filtering and flagging.

011 (385) The following behavior is expected of processors in regard to subject scheme
maps:

» Processors SHOULD be aware of the hierarchies of attribute values that
are defined in subject scheme maps for purposes of filtering, flagging, or
other metadata-based categorization.

» Processors SHOULD validate that the values of attributes that are bound to
controlled values contain only valid values from those sets. This
requirement is needed because basic XML parsers do not validate the list of
controlled values. If the controlled values are part of a named key scope,
the scope name is ignored for the purpose of validating the controlled
values.

* Processors SHOULD check that all values listed for an attribute in a
DITAVAL file are bound to the attribute by the subject scheme before

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 62 of 471

filtering or flagging. If a processor encounters values that are not included in
the subject scheme, it SHOULD issue a warning.

012 (385) Processors SHOULD apply the following algorithm when they apply filtering and
flagging rules to attribute values that are defined as a hierarchy of controlled values
and bound to an enumeration:

1. If an attribute specifies a value in the taxonomy, and a DITAVAL or other
categorization tool is configured with that value, the rule matches.

2. Otherwise, if the parent value in the taxonomy has a rule, that matches.
3. Otherwise, continue up the chain in the taxonomy until a matching rule is
found.

Example: A hierarchy of controlled values and conditional processing
The following code sample shows a set of controlled values that contains a hierarchy.

<subjectScheme>
<subjectdef keys="users">
<subjectdef keys="therapist">
<subjectdef keys="novice-therapist"/>
<subjectdef keys="expert-therapist"/>
</subjectdef>
<subjectdef keys="oncologist"/>
<subjectdef keys="physicist"/>
<subjectdef keys="radiologist"/>
</subjectdef>
<enumerationdef>
<attributedef name="audience"/>
<subjectdef keyref="users"/>
</enumerationdef>
</subjectScheme>

Processors that are aware of the hierarchy that is defined in the subject scheme map will handle filtering
and flagging in the following ways:
« If "therapist" is excluded, both "novice-therapist" and "expert-therapist" are by default excluded.

« If "therapist" is flagged and "novice-therapist" is not explicitly flagged, processors automatically
flag "novice-therapist" since it is a type of therapist.

5.2.5 The @subjectrefs attribute

The @subjectrefs attribute specifies one or more keys that are defined by a subject definition in a
subject scheme map. Multiple values are separated by white space.

The @subjectrefs attribute cascades. When specified on a topic reference, the @subjectrefs
attribute associates the referenced resource with subjects that are defined in subject scheme maps.

The DITA 2.0 specification does not indicate processing expectations for the @subjectrefs attribute.
The DITA Technical Committee expects to specify such expectations in the future.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 63 of 471

5.2.6 Examples of subject scheme maps
This section contains examples and scenarios that illustrate the use of subject scheme maps.

5.2.6.1 Example: a subject scheme map used to define taxonomic subjects

A subject scheme map can be used to define taxonomic subjects. Once defined, the subjects can be
referenced by specifying a @subjectrefs attribute on a <topicref> element.

The following subject scheme map defines a set of subjects that are used to classify content:

<subjectScheme>
<subjectdef keys="content-types">
<subjectdef keys="conceptual-material"/>
<subjectdef keys="reference"/>
<subjectdef keys="tutorial"/>
</subjectdef>
<subjectdef keys="operating-systems">
<subjectdef keys="linux"/>
<subjectdef keys="macosx"/>
<subjectdef keys="windows"/>
</subjectdef>
<subjectdef keys="user-tasks">
<subjectdef keys="administering"/>
<subjectdef keys="developing"/>
<subjectdef keys="installing"/>
<subjectdef keys="troubleshooting"/>
</subjectdef>
</subjectScheme>

The keys assigned to the subject definitions can be referenced by specifying the @subjectrefs attribute
on topic references in a navigation map:

<map>
<title>User assistance for the Acme Widget</title>
== 00 ==2
<topicref keyref="install-overview" subjectrefs="installing">
<topicref keyref="install-linux"/>
<topicref keyref="install-macosx"/>
<topicref keyref="install-windows"/>
<topicref keyref="install-troubleshooting" subjectrefs="troubleshooting"/>
</topicref>
Kll== 5650 ==>
</map>

Because the @subjectrefs attribute cascades, the effective value of the above markup is the same as
the following markup:

<map>

<title>User assistance for the Acme Widget</title>

<l=—= ... ==>

<topicref keyref="install-overview" subjectrefs="installing">
<topicref keyref="install-linux" subjectrefs="installing"/>
<topicref keyref="install-macosx" subjectrefs="installing"/>
<topicref keyref="install-windows" subjectrefs="installing"/>
<topicref keyref="install-troubleshooting" subjectrefs="installing troubleshooting"/>

</topicref>

Cl== 500 ==

</map>

5.2.6.2 Example: How hierarchies defined in a subject scheme map affect filtering
This scenario demonstrates how a processor evaluates attribute values when it performs conditional
processing for an attribute that is bound to a set of controlled values.

A company defines a subject category for "Operating system”, with a key set to "os". There are sub-
categories for Linux, Windows, and z/OS, as well as specific Linux variants: Red Hat Linux and SuSE

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 64 of 471

Linux. The company then binds the values that are enumerated in the "Operating system" category to the

@platform attribute:

<subjectScheme>
<subjectdef keys="os">
<topicmeta>
<navtitle>Operating systems</navtitle>
</topicmeta>
<subjectdef keys="linux">
<topicmeta>
<navtitle>Linux</navtitle>
</topicmeta>
<subjectdef keys="redhat">
<topicmeta>
<navtitle>RedHat Linux</navtitle>
</topicmeta>
</subjectdef>
<subjectdef keys="suse">
<topicmeta>
<navtitle>SuSE Linux</navtitle>
</topicmeta>
</subjectdef>
</subjectdef>
<subjectdef keys="windows">
<topicmeta>
<navtitle>Windows</navtitle>
</topicmeta>
</subjectdef>
<subjectdef keys="zos">
<topicmeta>
<navtitle>z/0S</navtitle>
</topicmeta>
</subjectdef>
</subjectdef>
<enumerationdef>
<attributedef name="platform"/>
<subjectdef keyref="os"/>
</enumerationdef>
</subjectScheme>

The enumeration limits valid values for the @platform attribute to the following: "linux", "redhat", "suse",
"windows", and "zos". If any other values are encountered, processors validating against the scheme will

issue a warning.

The following table illustrates how filtering and flagging operate when the above map is processed by a
processor. The first two columns provide the values specified in the DITAVAL file. The third and fourth

columns indicate the results of the filtering or flagging operation.

How

att="platform" att="platform" platform="redhat" is

val="linux" val="redhat"

evaluated

How platform="1linux"
is evaluated

action="exclude" action="exclude"

Excluded.

Excluded.

action="include" or
action="flag"

Excluded. This is an error
condition, because if all
"linux" content is excluded,
"redhat" also is excluded.
Applications can recover by
generating an error
message.

Excluded.

Unspecified

Excluded, because "redhat"
is a kind of "linux", and
"linux" is excluded.

Excluded.

dita-2.0-specification
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

26 August 2024
Page 65 of 471

att="platform"
val="linux"

att="platform"
val="redhat"

How
platform="redhat" is
evaluated

How platform="1linux"
is evaluated

action="include"

action="exclude" Excluded, because all Included.
"redhat” content is
excluded.

action="include" Included. Included.

action="flag" Included and flagged with Included.
the "redhat" flag.

Unspecified Included, because all Included.

"linux" content is included.

action="flag"

action="exclude"

Excluded, because all
"redhat" content is
excluded.

Included and flagged with
the "linux" flag.

action="include"

Included and flagged with
the "linux" flag, because
"linux" is flagged and
"redhat" is a type of "linux".

Included and flagged with
the "linux" flag.

action="flag" Included and flagged with Included and flagged with
the "redhat" flag, because a | the "linux" flag.
flag is available that is
specifically for "redhat".

Unspecified Included and flagged with Included and flagged with

the "linux" flag, because
"linux" is flagged and
"redhat" is a type of "linux"

the "linux" flag.

dita-2.0-specification
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

26 August 2024
Page 66 of 471

att="platform"
val="linux"

att="platform"
val="redhat"

How
platform="redhat" is
evaluated

How platform="1linux"
is evaluated

Unspecified

action="exclude"

Excluded, because all
"redhat” content is
excluded

If the default value for
@platform setin the
DITAVAL is "include", this
is included. If the default
value for @platform set
in the DITAVAL is
"exclude", this is excluded.

action="include"

Included.

Included, because all
"redhat" content is
included, and general
Linux content also applies
to RedHat

action="flag" Included and flagged with Included, because all
the "redhat" flag. "redhat" content is
included, and general
Linux content also applies
to RedHat
Unspecified If the default value for If the default value for

@platform setinthe
DITAVAL is "include", this is
included. If the default
value for @platform setin
the DITAVAL is "exclude",

@platform setin the
DITAVAL is "include", this
is included. If the default
value for @platform set
in the DITAVAL is

this is excluded.

"exclude", this is excluded.

5.2.6.3 Example: Defining values for @deliveryTarget

You can use a subject scheme map to define the values for the @deliveryTarget attribute. This
filtering attribute is intended for use with a set of hierarchical, controlled values.

In this scenario, one department produces electronic publications (EPUB, EPUB2, EPUB3, Kindle, etc.)
while another department produces traditional, print-focused output. Each department needs to exclude a
certain category of content when they build documentation deliverables.

The following subject scheme map provides a set of values for the @deliveryTarget attribute that
accommodates the needs of both departments.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE subjectScheme PUBLIC "-//OASIS//DTD DITA Subject Scheme Map//EN"
"subjectScheme.dtd">
<subjectScheme>
<subjectHead>
<subjectHeadMeta>
<navtitle>Example of values for the @deliveryTarget attribute</navtitle>
<shortdesc>Provides a set of values for use with the
@deliveryTarget conditional-processing attribute. This set of values is
illustrative only; you can use any values with the @deliveryTarget
attribute.</shortdesc>
</subjectHeadMeta>
</subjectHead>
<subjectdef keys="deliveryTargetValues">
<topicmeta><navtitle>Values for @deliveryTarget attributes</navtitle></topicmeta>
<!-- A tree of related values -->
<subjectdef keys="print">
<topicmeta><navtitle>Print-primary deliverables</navtitle></topicmeta>
<subjectdef keys="pdf">

dita-2.0-specification
Standards Track Work Product

26 August 2024

Copyright © OASIS Open 2022. All Rights Reserved. Page 67 of 471

<topicmeta><navtitle>PDF</navtitle></topicmeta>
</subjectdef>
<subjectdef keys="css-print">
<topicmeta><navtitle>CSS for print</navtitle></topicmeta>
</subjectdef>
<subjectdef keys="xsl-fo">
<topicmeta><navtitle>XSL-FO</navtitle></topicmeta>
</subjectdef>
<subjectdef keys="afp">
<topicmeta><navtitle>Advanced Function Printing</navtitle></topicmeta>
</subjectdef>
<subjectdef keys="ms-word">
<topicmeta><navtitle>Microsoft Word</navtitle></topicmeta>
</subjectdef>
<subjectdef keys="indesign">
<topicmeta><navtitle>Adobe InDesign</navtitle></topicmeta>
</subjectdef>
<subjectdef keys="open-office">
<topicmeta><navtitle>Open Office</navtitle></topicmeta>
</subjectdef>
</subjectdef>
<subjectdef keys="online">
<topicmeta><navtitle>Online deliverables</navtitle></topicmeta>
<subjectdef keys="html-based">
<topicmeta><navtitle>HTML-based deliverables</navtitle></topicmeta>
<subjectdef keys="html">
<topicmeta><navtitle>HTML</navtitle></topicmeta>
<subjectdef keys="html5">
<topicmeta><navtitle>HTML5</navtitle></topicmeta>
</subjectdef>
</subjectdef>
<subjectdef keys="help">
<topicmeta><navtitle>Contextual help</navtitle></topicmeta>
<subjectdef keys="htmlhelp">
<topicmeta><navtitle>HTML Help</navtitle></topicmeta>
</subjectdef>
<subjectdef keys="webhelp">
<topicmeta><navtitle>Web help</navtitle></topicmeta>
</subjectdef>
<subjectdef keys="javahelp">
<topicmeta><navtitle>Java Help</navtitle></topicmeta>
</subjectdef>
<subjectdef keys="eclipseinfocenter">
<topicmeta><navtitle>Eclipse InfoCenter</navtitle></topicmeta>
</subjectdef>
</subjectdef>
<subjectdef keys="epub">
<topicmeta><navtitle>EPUB</navtitle></topicmeta>
<subjectdef keys="epub2">
<topicmeta><navtitle>EPUB2</navtitle></topicmeta>
</subjectdef>
<subjectdef keys="epub3">
<topicmeta><navtitle>EPUB3</navtitle></topicmeta>
</subjectdef>
<subjectdef keys="ibooks">
<topicmeta><navtitle>iBooks</navtitle></topicmeta>
</subjectdef>
<subjectdef keys="nook">
<topicmeta><navtitle>nook</navtitle></topicmeta>
</subjectdef>
</subjectdef>
<subjectdef keys="kindle">
<topicmeta><navtitle>Amazon Kindle</navtitle></topicmeta>
<subjectdef keys="kindle8">
<topicmeta><navtitle>Kindle Version 8</navtitle></topicmeta>
</subjectdef>
</subjectdef>
</subjectdef>
</subjectdef>
</subjectdef>
<enumerationdef>
<attributedef name="deliveryTarget"/>
<subjectdef keyref="deliveryTargetValues"/>

dita-2.0-specification
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved.

26 August 2024
Page 68 of 471

</enumerationdef>
</subjectScheme>

5.3 Metadata cascading

Metadata cascading is the process by which metadata elements and attributes specified for a map or for
a topic reference cascade to nested references. This allows metadata properties to be set once and apply
to an entire map or branch of a map.

5.3.1 Cascading of metadata attributes in a DITA map

Certain attributes cascade throughout a map, which facilitates attribute and metadata management.
When attributes cascade, they apply to the elements that are children of the element where the attributes
were specified. Cascading applies to a containment hierarchy, as opposed to a specialization hierarchy.

The following attributes cascade when set on the <map> element or when set within a map:

* (@rev

e Q@props and any attribute specialized from @props, including those integrated by default in the
OASIS-provided document-type shells: @audience, @deliveryTarget, @platform,
@product, Gotherprops

¢ @linking, @toc, @search

* (@format, @scope, @type

¢ @xml:lang, @dir, @translate

* (@processing-role

* (@cascade

* (@subjectrefs

Cascading is additive for attributes that accept multiple values, except when cascade="nomerge" is
specified. For attributes that take a single value, the value that is defined on the closest containing
element takes effect.

In a relationship table, metadata can be applied to entire rows or columns, as well as individual cells. The
metadata cascade operates differently due to the nature of this tabular structure The cascade is not
driven by a strict containment hierarchy because <relcolspec> elements do not contain child elements.

The following list illustrates how metadata cascades in a relationship table:
e <reltable>
— <relcolspec>
¢ <relrow>
¢ <relcell>
e <topicref>

Related reference
topicmeta (272)

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 69 of 471

Topic metadata is metadata that applies to a topic based on its context in a map.

5.3.1.1 Processing cascading attributes in a map
Certain rules apply to processors when they process cascading attributes in a map.

013 (385) When determining the value of an attribute, processors MUST evaluate each
attribute on each individual element in a specific order. This order is specified in the
following list. Applications MUST continue through the list until a value is
established or until the end of the list is reached, at which point no value is
established for the attribute. In essence, the list provides instructions on how
processors can construct a map where all attribute values are set and all cascading
is complete.

014 (385) For attributes within a map, the following processing order MUST occur:

1. The Qconref and @keyref attributes are evaluated.

2. The explicit values specified in the document instance are evaluated. For
example, a <topicref> element with the @toc attribute set to "no" will
use that value.

3. The default or fixed attribute values are evaluated. For example, the Gtoc
attribute on the <reltable> element has a default value of "no".

4. The default values that are supplied by a controlled values file are
evaluated.

5. The attributes cascade.

The processing-supplied default values are applied.

7. After the attributes are resolved within the map, any values that do not
come from processing-supplied defaults will cascade to referenced maps.

o

For example, most processors will supply a default value of toc="yes"
when no @toc attribute is specified. However, a processor-supplied default
of toc="yes" does not override a value of toc="no" that is seton a
referenced map. If the toc="yes" value is explicitly specified, is given as a
default through a DTD, RNG, or controlled values file, or cascades from a
containing element in the map, it will override a toc="no" setting on the
referenced map. See 5.3.3 Map-to-map cascading behaviors (73) for
more details.

8. Repeat steps 1 (70) to 4 (70) for each referenced map.

9. The attributes cascade within each referenced map.

10.The processing-supplied default values are applied within each referenced
map.

11.Repeat the process for maps referenced within the referenced maps.

For example, in the case of <topicref toc="yes">, applications must stop at item 2 (70) in the list; a
value is specified for @toc in the document instance, so @toc values from containing elements will not
cascade to that specific <topicref> element. The toc="yes" setting on that <topicref> element
will cascade to contained elements, provided those elements reach item 5 (70) when evaluating the @toc
attribute.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 70 of 471

5.3.1.2 Merging of cascading attributes

The @cascade attribute can be used to modify the additive nature of attribute cascading, although it does
not turn off cascading altogether. The attribute has two predefined values: "merge" and "nomerge".

merge
Indicates that the metadata attributes cascade, and that the values of the metadata attributes are
additive. This is the processing default for the @cascade attribute.

nhomerge
Indicates that the metadata attributes cascade, but that they are not additive for <topicref>
elements that specify a different value for a specific metadata attribute. If the cascading value for an
attribute is already merged based on multiple ancestor elements, that merged value continues to
cascade until a new value is encountered. That is, setting cascade="nomerge" does not undo
merging that took place on ancestor elements.

015 (386) If no value is set for the @merge attribute and no value cascades from a containing
element, processors SHOULD assume a default of "merge".

016 (386) Implementers MAY define their own custom, implementation-specific tokens for the
@merge attribute. To avoid name conflicts between implementations or with future
additions to the standard, implementation-specific tokens SHOULD consist of a
prefix that gives the name or an abbreviation for the implementation followed by a
colon followed by the token or method name. For example, a processor might
define the token "appToken:audience" in order to specify cascading and merging
behaviors for only the @audience attribute.

017 (386) The predefined values for the @cascade attribute MUST precede any
implementation-specific tokens, for example, cascade="merge
appToken:audience".

5.3.2 Reconciling topic and map metadata elements

The <topicmeta> element in maps can contain numerous metadata elements. These metadata
elements can have an effect on the parent <topicref> element, any child <topicref> elements, and
— if a direct child of the <map> element — on the .

For each element that can be contained in the <topicmeta> element, the following table addresses the
following questions:

How does it apply to the topic?
This column describes how the metadata specified within the <topicmeta> element interacts with
the metadata specified in the referenced topic. In most cases, the properties are additive. For
example, when a topic reference in a map contains <category>installation</category>,
<category>installation</category> is added during processing to any metadata that is
specified in the topic prolog.

Does it cascade to other topics in the map?
This column indicates whether the specified metadata element cascades to nested <topicref>
elements. For example, when a topic reference in a map contains <author>Jane Doe</author>,
<author>Jane Doe</author> is added during processing to the metadata for all child topic
references. Some elements do not cascade.

What is the purpose when specified on the <map> element?
The map element permits metadata to be specified for the map. This column describes the effect that
an element has when specified at this level.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 71 of 471

When set on the <map> element, does it apply to all topics referenced in the map?
When specified on the <map> element element, some metadata elements then apply to all the topics
that are referenced in the map.

Table 1: <topicmeta> elements and their properties

How does it apply

Does it cascade to
child <topicref>

What is the purpose
when set on the

When set on the
<map> element,
does it apply to all
topics referenced in

Element to the topic? elements? <map> element? the map?
<audience> Add to the topic Yes Specify an audience | Yes
for the map
<author> Add to the topic Yes Specify an author for | Yes
the map
<category> Add to the topic Yes Specify a category Yes
for the map
<copyright> Add to the topic Yes Specify a copyright Yes
for the map
<critdates> Add to the topic Yes Specify critical dates | Yes
for the map
<data> Add to the topic No, unless No stated purpose No
specialized for a
purpose that
cascades
<foreign> Add to the topic No, unless No stated purpose No
specialized for a
purpose that
cascades
<keytext> Not added to the No No stated purpose No
topic
<keywords> Add to the topic No No stated purpose No
<metadata> Add to the topic Yes Specify metadata for | Yes
the map
<othermeta> Add to the topic No Define metadata for | Yes
the map
<permissions> Add to the topic Yes Specify permissions | Yes
for the map
<prodinfo> Add to the topic Yes Specify product info | Yes
for the map
<publisher> Add to the topic Yes Specify a publisher No
for the map
<resourceid> Add to the topic No Specify a resource ID | No

for the map itself

dita-2.0-specification

Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

26 August 2024
Page 72 of 471

How does it apply

Does it cascade to
child <topicref>

What is the purpose
when set on the

When set on the
<map> element,
does it apply to all
topics referenced in

topic

Element to the topic? elements? <map> element? the map?
<shortdesc> Applies only to links | No Provide a description | No
created based on this of the map
occurrence in the
map
<source> Add to the topic No Specify a source for | No
the map
<titlealt> Add to the topic No Specify an alternative | No
before its title for the map
<titlealt>
elements
<ux-window> Not added to the No Definitions are global, | No

so setting at map
level is equivalent to
setting anywhere
else.

Related reference

topicmeta (272)

Topic metadata is metadata that applies to a topic based on its context in a map.

5.3.3 Map-to-map cascading behaviors

When a DITA map or map branch is referenced by another DITA map, by default certain rules apply.
These rules pertain to the cascading behaviors of attributes, metadata elements, and the roles that are
assigned to content , for example, the role of "Chapter" that is assigned by a <chapter> element.
Attributes and elements that cascade within a map generally follow the same rules when cascading from
one map to another map, but there are some exceptions and additional rules that apply.

5.3.3.1 Cascading of attributes from map to map

Certain attributes cascade from map to map.

The following attributes cascade from map to map:

* (drev

* (@props and any attribute specialized from @props, including those integrated by default in the
OASIS-provided document-type shells: @audience, @deliveryTarget, @platform,
@product, @otherprops

* (@linking, @toc, @search

s (dtype
e (@translate

* (@processing-role

* (@cascade

* (@subjectrefs

dita-2.0-specification

Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

26 August 2024
Page 73 of 471

As with values that cascade within a map, the cascading is additive if the attribute permits multiple values,
such as Raudience. For attributes that take a single value, the value that is defined on the closest
containing element takes effect.

The following attributes do not cascade from map to map

@format
The @format attribute is set to "ditamap" when a map or map branch is referenced, so it cannot
cascade through to the referenced map.

@scope
The value of the @scope attribute describes the map itself, rather than the content. For example,
when the @scope attribute is set to "external”, it indicates that the referenced map itself is external
and unavailable, so the value cannot cascade into that referenced map.

@xml:lang and @dir
Cascading behavior for @xm1 : 1lang is defined in 4.2.1 The xml:lang attribute (47). The @dir
attribute follows the same rules as @xml : lang.

While the @class attribute is unique and does not cascade, the value of the attribute is used to
determine the processing roles that cascade from map to map. See Cascading of roles from map to map
for more information.

5.3.3.2 Cascading of metadata elements from map to map

Elements that are contained within <topicmeta> elements follow the same rules for cascading from
map to map as the rules that apply within a single DITA map.

For a complete list of which elements cascade within a map, see the column "Does it cascade to child
<topicref> elements?" in the topic 5.3.2 Reconciling topic and map metadata elements (71).

Note It is possible that a specialization might define metadata that is intended to replace rather than
add to metadata in the referenced map, but DITA, by default, does not have a mechanism to
specify this behavior.

5.3.4 Examples of metadata cascading

These examples illustrate the processing expectations for cascading metadata. The processing examples
use either before and after sample markup or expanded syntax that shows the equivalent markup
withough cascading.

5.3.4.1 Example: How map-level metadata elements cascade to the referenced
topics

In this scenario, elements located in the<topicmeta> element for a map cascade to the referenced
topics.

The following code sample illustrates how an information architect can apply certain metadata to all the
DITA topics in a map:

<map xml:lang="en-us">

<title>DITA maps</title>

<topicmeta>
<author>Kristen James Eberlein</author>
<copyright>

<copyryear year="2020"/>

<copyrholder>0ASIS</copyrholder>
</copyright>

</topicmeta>

<topicref href="dita-maps.dita">
<topicref href="definition ditamaps.dita"/>
<topicref href="purpose ditamaps.dita"/>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 74 of 471

Rl== 500 ==
</topicref>
</map>

The author and copyright information cascades to each of the DITA topics that are referenced in the DITA
map. When the DITA map is processed to HTML5, for example, the author and copyright metadata apply
to each generated HTMLS5 file.

5.3.4.2 Example: How metadata elements cascade from one map to another

In this scenario, a metadata element that is located in a map reference cascades to the topics that are
referenced in a nested map.

Assume the following references in test.ditamap:

<map>
<topicref href="a.ditamap" format="ditamap" toc="no"/>
<mapref href="b.ditamap" audience="developer"/>
<mapref href="c.ditamap#branch2" platform="myPlatform"/>
<mapref href="d.ditamap" subjectrefs="puzzles"/>

</map>

e The map a.ditamap is treated as if toc="no" is specified on the root <map> element. This
means that the topics that are referenced by a.ditamap do not appear in the navigation
generated by test.ditamap, except for branches within the map that explicitly set toc="yes".

e The map b.ditamap is treated as if audience="developer" is set on the root <map>
element. If the @audience attribute is already set on the root <map> element within b.ditamap,
the value "developer" is added to any existing values.

e The element with id="branch2" within the map c.ditamap is treated as if
platform="myPlatform" is specified on that element. If the @platform attribute is already
specified on the element with id="branch", the value"myPlatform” is added to existing values.

e The map d.ditamap is treated as if subjectrefs="puzzles" is set on the root <map>
element. If the @subjectrefs attribute is already set on the root <map> element within
d.ditamap, the value "puzzles" is added to any existing values.

5.3.4.3 Example: How attributes cascade from one map to another
In this scenario, attributes in one map cascade to a nested map.

Assume the following references in test .ditamap:

<map>
<topicref href="a.ditamap" format="ditamap" toc="no"/>
<mapref href="b.ditamap" audience="developer"/>
<mapref href="c.ditamap#branch2" platform="myPlatform"/>
</map>

e The map a.ditamap is treated as if toc="no" is specified on the root <map> element. This
means that the topics that are referenced by a.ditamap do not appear in the navigation
generated by test.ditamap, except for branches within the map that explicitly set toc="yes".

e The map b.ditamap is treated as if audience="developer" is set on the root <map>
element. If the @Raudience attribute is already set on the root <map> element within b.ditamap,
the value "developer" is added to any existing values.

* The element with id="branch2" within the map c.ditamap is treated as if
platform="myPlatform" is specified on that element. If the @platform attribute is already
specified on the element with id="branch", the value"myPlatform" is added to existing values.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 75 of 471

5.3.4.4 Example: How the @cascade attribute affects attribute cascading
In this scenario, the @cascade attribute is used to modify how metadata attributes cascade within a map.

Figure 9: Example of cascade="merge"

Consider the following code example:

<map audience="a b" cascade="merge">
<topicref href="topic.dita" audience="c"/>
</map>

In this map, the cascade="merge" attribute instructs a processor to merge attribute values while
cascading. With @audience specified on both the <map> element and the <topicref> element, the
effective @Raudience attribute value for the reference to topic.ditais"abc".

Figure 10: Example of cascade="nomerge"

Consider the following code example:

<map audience="a b" cascade="nomerge">
<topicref href="topic.dita" audience="c"/>
</map>

In this map, the cascade="nomerge™" attribute instructs a processor not to merge attribute values while
cascading. With Qaudience specified on both the <map> element and the <topicref> element, the
effective @audience attribute value on the reference to topic.dita is not merged with the value from
the map and remains "c".

Figure 11: Example of changing the @cascade value within the map

Consider the following code example:

<map platform="a" product="x" cascade="merge">
<topicref href="one.dita" platform="b" product="y">
<topicref href="two.dita">
<topicref href="three.dita" cascade="nomerge" product="z">
<topicref href="four.dita"/>
</topicref>
</topicref>
</topicref>
</map>

In this map, the @cascade attribute is set to "merge" at the map level but changes to "nomerge" on a
topic reference.

« For the topic reference to one.dita, cascade="merge" is specified. This results in an effective
@platform value of "a b" and an effective @product value of "x y".

* The topic reference to two.dita does not specify any additional attributes. The effective values
for the @platform and @product attributes are the same as those on the parent topic reference
to one.dita. The effective value of of the @platform attribute is "a b", and the effective value
for the @product attribute is "x y".

* The topic reference to three.dita specifies cascade="nomerge", S0 attribute values from
other elements do not merge with anything specified on the topic reference. The @platform
attribute is not specified, so the effective value is "a b", which still cascades from the parent
element. The @product value does not merge with values from the parent, so the effective value
is"z".

e The topic reference to four.dita does not specify any additional attributes. The effective values
for the @platform and @product attributes are the same as those on the parent topic reference

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 76 of 471

to three.dita. The effective value of of the @platform attribute is "a b", and the effective
value for the @product attribute is "z".

5.4 Chunking

Content often needs to be delivered in a different granularity than it is authored. The @chunk attribute
enables map authors to specify that multiple source documents should be combined into a single
document for delivery or that a single source document should be split into multiple documents for
delivery.

5.4.1 About the @chunk attribute

The @chunk attribute specifies how a processor should split or combine source DITA documents into
alternate organizational schemes for rendering purposes. This means that the @chunk attribute is only
relevant when the organization of source DITA documents has an effect on the organization of published
documents.

The @chunk attribute only operates on topics and nested topics. It does not operate on other topic
content, such as sections.

The @chunk attribute is composed of a single token without any white space. DITA defines the following
tokens for the @chunk attribute:

combine
Instructs a processor to combine the referenced source documents for rendering purposes. This is
intended for cases where a publishing process normally results in a single output artifact for each
source XML document.

split
Instructs a processor to split each topic from the referenced source document into its own document
for rendering purposes. This is intended for cases where a publishing process normally results in a
single output artifact for each source XML document, regardless of how many DITA topics exist
within each source document.

Applications can use custom tokens for the @chunk attribute.

The @chunk attribute does not cascade.

018 (386) The following rules apply to all values of the @chunk attribute:

* When the source document organization has no effect on published output,
such as when producing a single PDF or EPUB, processors MAY ignore the
@chunk attribute.

* When the @chunk attribute results in more or fewer documents based on
the combine or split tokens, the hierarchy of topics within the resulting
map and topic organization SHOULD match the hierarchy in the original
topics and maps.

* When the @chunk attribute results in more or fewer documents, processors
MAY create their own naming schemes for those reorganized documents.

* The @chunk attribute values apply to DITA topic documents referenced
from a map. Processors MAY apply equivalent processing to non-DITA
documents.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 77 of 471

5.4.2 Processing chunk="combine"

The presence of chunk="combine" instructs a processor to combine the referenced source documents
for rendering purposes.

The following rules apply:

e When chunk="combine" is specified on the root element of a map, all source DITA documents
that are referenced by the map are treated as one DITA document.

* When chunk="combine" is specified on a branch of a map, all source DITA documents that are
referenced within that branch are treated as one DITA document.

Note This is true regardless of whether the element that specifies @chunk refers to a topic
or specifies a heading. In cases such as <topicgroup> where a grouping element
specifies chunk="combine", the equivalent DITA document would be a single DITA
document with a root element that groups peer topics.

* When chunk="combine" is specified on a map, map branch, or map reference, all source DITA
documents that are grouped by the reference are treated as a single resource. Any additional
@chunk attributes on elements within the grouping are ignored.

Comment by Kristen J Eberlein on 04 February 2022
What's the difference between the content of li[3] and [li4]?

Disposition: Unassigned

5.4.3 Processing chunk="split"

The presence of chunk="split" instructs a processor to split each topic from the referenced source
document into its own document for rendering purposes.

The following rules apply:

e« When chunk="split" is specified on the root element of a map, it sets a default operation for
all source DITA documents in the navigation structure of the map. The default sp1it value is
used except where a combine value is encountered, in which case combine takes over for that
entire branch.

* When chunk="split" is specified on a <topicref> element that references a source DITA
document, it indicates that all topics within the referenced document should be rendered as
individual documents.

e« When chunk="split" is specified on an element such as <topicgroup> that does not
reference a source DITA document or result in published output, the attribute has no meaning.

5.4.4 Using the @chunk attribute for other purposes

Applications can define additional tokens for use in the @chunk attribute. These tokens are
implementation dependent and might not be supported by other applications.

5.4.5 Examples of the @chunk attribute

These examples illustrate the processing expectations for various scenarios that involve the @chunk
attribute. The processing examples use either before and after sample markup or expanded syntax that
shows the equivalent markup without the @ chunk attribute.

Note The examples use sample files with modified file names to help illustrate the equivalent before
and after resolution of @chunk attributes. However, there is no requirement for
implementations processing the @chunk attribute to generate files, as long as the rendered

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 78 of 471

result is split or combined as described. If generating files, the file names are implementation
dependent.

5.4.5.1 Example: Using @chunk to combine all documents into one

When a processor would typically render each topic document as an independent result document, the
@chunk attribute can be used to render all content as a single result document.

Figure 12: Root map and the topics that it references
Consider the following DITA map:

<map>
<title>Lesson plan</title>
<topicref href="background.dita">
<!-- More topic references to background topics -->
</topicref>
<topicref href="goals.dita">
<!-- More topic references to goal topics -->
</topicref>
<!-- More topic references -->
</map>

The following code samples show the content of background.dita and goals.dita:

<!-- Content of background.dita -->

<topic id="background">
<title>Prerequisite concepts</title>
<shortdesc>This information is necessary before starting ...</shortdesc>
<body> <!-- ... -=-> </body>

</topic>

<!-- Content of goals.dita -->
<topic id="goals">
<title>Lesson goals</title>

<shortdesc>After you complete the lesson ...</shortdesc>
<body> <!-- ... -=-> </body>
</topic>

For many systems or output formats, each document in the map is typically rendered as an independent
document. For example, rendering this map as HTML5 might result in background.html and
goals.html, in addition to other HTML5 files.

Figure 13: Root map with chunking specified

If the output requirements demand only a single result document, specifying chunk="combine" on the
root map element instructs a processor to render a single document that combines all topics:

<map chunk="combine">
<title>Lesson plan</title>
<topicref href="background.dita">

<!-- More topic references to background topics -->
</topicref>
<topicref href="goals.dita">
<!-- More topic references to goal topics -->
</topicref>
dita-2.0-specification 26 August 2024

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 79 of 471

<!-- More topic references -->
</map>

Figure 14: Equivalent content of source documents after evaluation
The result of evaluating the @chunk attribute is equivalent to the following map and topic documents:

<!-- Root map -->
<map>

<title>Lesson plan</title>

<topicref href="combinedTopics.dita"/>
</map>

<dita>
<!-- original content of background.dita -->
<topic id="background">
<title>Prerequisite concepts</title>
<shortdesc>This information is necessary before starting</shortdesc>

<body> <!-- ... --> </body>
<!-- More background topics -->
</topic>
<!-- original content of goals.dita -->

<topic id="goals">
<title>Lesson goals</title>
<shortdesc>After you complete the lesson ...</shortdesc>
<body> <!-- ... --> </body>
<!-- More goal topics -->

</topic>

<!-- More topics -->

</dita>

The content from all topics within the map is combined into a single result document, with a topic order
and topic nesting structure that matches the original map hierarchy:

5.4.5.2 Example: Using @chunk to render a single document from one or more
branches

When a publishing system typically would render each topic document as an independent result
document, the @chunk attribute can be used to render individual branches of a map as single documents.

Figure 15: Root map and the topics that it references
Consider the following DITA map:

<map>
<title>Lesson plan</title>
<topicref href="goals.dita">

<!-- More topic references to goal topics -->
</topicref>
<topicref href="firstLesson.dita">

<!-- More topic references to first lesson topics -->
</topicref>
<topicref href="nextLesson.dita">

<!-- More topic references to second lesson topics -->
</topicref>
<!-- More map branches -->

</map>

The following code samples show the content of firstLesson.dita and nextLesson.dita:

<!-- firstLesson.dita -->
<task id="firstLesson">
<title>Starting to work with scissors</title>
<shortdesc>This lesson will teach ... </shortdesc>
<taskbody>
K== (50 ==>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 80 of 471

</taskbody>
</task>

<!-- nextLesson.dita -->
<task id="nextLesson">
<title>Advanced cutting</title>

<shortdesc>This lesson will introduce complex shapes ... </shortdesc>
<taskbody>
== 00 ==
</taskbody>
</task>

For many systems or output formats, each document in the map is typicallyrendered as an independent
document. For example, rendering this map as HTML5 might result in goals.html,
firstLesson.html, and nextLesson.html, while the child documents within each branch would
each result in their own HTML files.

Figure 16: Root map with chunking specified for certain branches

When output requirements demand that portions of the map be combined into a single document,
specifying chunk="combine" on a map branch instructs a processor to render one document that
combines all topics in that branch.

In the following code sample, chunk="combine" is specified on the map branches for the lessons. This
indicates that each lesson branch should rendered as a single result document. Topics in the first branch
with goals.dita will not be affected.

<map>
<title>Lesson plan</title>
<topicref href="goals.dita">

<!-- More topic references to goal topics -->
</topicref>
<topicref href="firstLesson.dita" chunk="combine">

<!-- More topic references to first lesson topics —-->
</topicref>
<topicref href="nextLesson.dita">

<!-- More topic references to second lesson topics -->
</topicref>
<!-- More map branches -->

</map>

Figure 17: Equivalent content of source documents after evaluation
The result of evaluating this @chunk attribute is equivalent to the following map and topic documents:

<!-- Root map -->
<map>
<title>Lesson plan</title>
<topicref href="goals.dita">
<!-- More topic references to goal topics -->
</topicref>
<topicref href="firstLesson.dita"/>
<topicref href="nextLesson.dita"/>
<!-- More map branches -->
</map>

<!-- firstLesson.dita -->
<task id="firstLesson">
<title>Starting to work with scissors</title>
<shortdesc>This lesson will teach ... </shortdesc>
<taskbody>
Llle= 50 =22
</taskbody>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 81 of 471

<!-- More first lesson topics -->
</task>

<!-- nextLesson.dita -->
<task id="nextLesson">
<title>Advanced cutting</title>

<shortdesc>This lesson will introduce complex shapes...</shortdesc>
<taskbody>
== 00 ==
</taskbody>
<!-- More second lesson topics -->
</task>

Content from each branch where @chunk attribute is specified is combined into a single result document,
with a topic order and topic nesting structure that matches the original map hierarchy. Content from
outside of those branches remains unchanged.

5.4.5.3 Example: Using @chunk to combine groups of topics

The @chunk attribute can be used on grouping elements to combine multiple source documents into one
result document.

Figure 18: Root map with @chunk specified on grouping elements

Consider the following DITA map, where @chunk is specified on both <topicgroup> and
<topichead> elements:

<map>
<title>Groups are combined</title>
<topicgroup chunk="combine">
<topicref href="ingroupl.dita"/>
<topicref href="ingroup2.dita"/>
</topicgroup>
<topichead chunk="combine">
<topicmeta>
<navtitle>Heading for a branch</navtitle>
</topicmeta>
<topicref href="inheadl.dita"/>
<topicref href="inhead2.dita"/>
</topichead>
</map>

The result of evaluating the @chunk attribute on the <topicgroup> element is equivalent to a single
DITA document that contains the content of both ingroupl.dita and ingroup2.dita.

The result of evaluating the @chunk attribute on <topichead> is also a single result document. In many
applications, a <topichead> is equivalent to a single title-only topic. In that case, the chunked result is
equivalent to a root topic with the title "Heading for a branch", that contains as child topics the content of
both inheadl.dita and inhead2.dita. If <topichead> is ignorable in the current processing
context, the chunked result would be equivalent to processing <topicgroup>: a single DITA document
with the content of both inheadl.dita and inhead2.dita.

Figure 19: Equivalent content of source documents after evaluation
The result of evaluating the @chunk attribute is equivalent to the following map and topic documents:

<map>
<title>Groups are combined</title>
<topicref href="chunkgroup-1.dita"/>
<topicref href="chunkgroup-2.dita"/>
</map>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 82 of 471

The following code blocks show the content of chunkgroup-1.dita and chunkgroup-2.dita:

<!-- chunkgroup-1l.dita -->
<dita>
<!-- Content of ingroupl.dita -->
<!-- Content of ingroup2.dita -->
</dita>
<!-- chunkgroup-2.dita -->
<dita>

<topic id="head">
<title>Heading for a branch</title>

<!-- Content of inheadl.dita -->
<!-- Content of inhead2.dita -->
</topic>
</dita>

5.4.5.4 Example: How chunk="combine" effects the map hierarchy

Special attention is necessary when combining a nested map hierarchy that includes documents with
their own nested topics.

Figure 20: Source DITA map
Consider the following DITA map:

<map chunk="combine'">
<title>Generation example</title>
<topicref href="ancestor.dita">
<topicref href="middle.dita">
<topicref href="child.dita"/>
</topicref>
</topicref>
</map>

In this case, the @chunk attribute instructs a processor to treat the three topics as a single combined
document, while preserving the original map hierarchy.

Figure 21: Source documents with nested structures

Now consider the following three source documents, each of which includes nested or peer topics:
ancestor.dita,middle.dita, and child.dita.

<!-- ancestor.dita -->
<dita>
<topic id="ancestor-first">
<title>First major topic in ancestor composite document</title>
<!-- ... Topic content ... -->
</topic>
<!-- More topics in ancestor composite document -->
<topic id="ancestor-last">
<title>Last major topic in ancestor composite doc</title>
<!-- ... Topic content ... —-->
<topic id="ancestor-last-child">
<title>Child of last major topic in ancestor composite document</title>
<!-- ... Topic content ... —-->
</topic>
</topic>
</dita>

<!-- middle.dita -->
<topic id="middle-root">
<title>Root topic in middle document</title>
<body>
== 500 ==
</body>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 83 of 471

<topic id="middle-child">
<title>Child of root topic in middle document</title>
<!-- ... Body content, maybe more children topics -->
</topic>
</topic>

<!-- child.dita -->
<topic id="child">
<title>Small child topic</title>
<!-- ... Topic content ... —-->
</topic>

Figure 22: Evaluating chunk="combine"

When chunk="combine" is evaluated, the three source documents are combined into one. Both the
ancestor and middle documents have child topics that need to be taken into account:

* ancestor.dita has aroot <dita> element, with several root-level topics. After evaluating the
@chunk attribute, content from middle.dita is placed after the topic with id="ancestor-
last-child"in ancestor.dita

e middle.dita does not have a <dita> element, but it does have a nested topic, so content from
child.dita is located after that nested topic.

In each case, the original map hierarchy is preserved.

Figure 23: Equivalent content of source documents after evaluation
The result of evaluating the @chunk attribute is equivalent to the following map and topic documents:

<!-- Root map -->
<map>
<title>Generation example</title>
<topicref href="input.dita"/>
</map>

<!-- input.dita -->
<dita>
<topic id="ancestor-first">
<title>First major topic in ancestor composite doc</title>
<!-- ... Topic content ... —-->
</topic>
<!-- More topics in ancestor composite doc -->
<topic id="ancestor-last">
<title>Last major topic in ancestor composite doc</title>
<!-- ... Topic content ... —-->
<topic id="ancestor-last-child">
<title>Child of last major topic in ancestor composite doc</title>
<!-- ... Topic content ... —-->
</topic>
<!-- Content of middle.dita combined here -->
<topic id="middle-root">
<title>Root topic in middle doc</title>
<body><!-- ... --></body>
<topic id="middle-child">
<title>Child of root topic in middle doc</title>
<!-- ... Body content, maybe more children topics ... -->
</topic>
<!-- Content of child.dita combined here -->
<topic id="child">
<title>Small child topic</title>
<!-- ... Topic content ... —-->
</topic>
</topic>
</topic>
</dita>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 84 of 471

5.4.5.5 Example: Using @chunk to split documents

When topics are authored or generated in a single DITA document, specifying chunk="split" instructs
processors to render them individually when possible.

This topic contains two examples: Splitting a single topic document and splitting all topic documents.

Splitting a single topic document
This example covers the scenario of splitting a single topic document that is referenced in a DITA map.

Figure 24: Root map and the topic documents that it references

Consider the following DITA map, which references generated topics that document the messages that
are produced by an application:

<map>
<title>Message guide</title>
<topicref href="about.dita">
<topicref href="messages-install.dita"/>
<topicref href="messages-run.dita"/>
<topicref href="messages-other.dita"/>
</topicref>
</map>

The following code samples show the contents of the four topic documents: about.dita, messages-—
install.dita, messages-run.dita, and messages-other.dita

<!-- about.dita -->
<topic id="about">
<title>About this guide</title>

<shortdesc>Warnings or errors are displayed when ... <shortdesc>
</topic>
<!-- messages-install.dita -->
<dita>

<topic 1d="INS001">
<title>INS001l: Installation failure</title>

<!-- Explanation and recovery steps ... -->
</topic>
<!-- More topics that document installation messages ... —-->
</dita>

<! messages-run.dita -->
<dita>
<topic id="RUNOO1">
<title>RUNO001l: Failed to initialize</title>

<!-- Explanation and recovery steps ... -->
</topic>
<!-- Hundreds of message topics ... —-->

<topic id="RUN999">
<title>RUN999: Out of memory</title>

<!-- Explanation and recovery steps ... —-->
</topic>
</dita>
<!-- messages-other.dita -->

<topic id="othermsg">
<title>Other messages</title>
<shortdesc>You could also encounter ... </shortdesc>
<topic 1d="OTHEROO01">
<title>OTHEROOl: Analyzer is tired</title>
<!-- Explanation and recovery steps ... -->
</topic>
<topic 1d="OTHERO02">
<title>OTHER002: Analyzer needs to be updated</title>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 85 of 471

<!-- Explanation and recovery steps ... -->
</topic>
</topic>

When processed to HTMLS5, this map might result in four result documents: about .html, messages—
install.html, messages-run.html, and messages—-other.html.

Figure 25: Splitting topics in one topic document

With hundreds of messages in messages-run.dita, it might be better in some situations to render one
result document for each message topic in the document. This can be done by specifying
chunk="split" on the topic reference to messages-run.dita:

<map>
<title>Message guide</title>
<topicref href="about.dita">
<topicref href="messages-install.dita"/>
<topicref href="messages-run.dita" chunk="split"/>
<topicref href="messages-other.dita"/>
</topicref>
</map>

Figure 26: Equivalent content of source documents after evaluation

The result of evaluating @chunk in this case is equivalent to the following map. While messages-
run.dita now is split into hundreds of topics, the other topics in the map are unaffected.

<map>
<title>Message guide for WidgetAnalyzer</title>
<topicref href="about.dita">
<topicref href="messages-install.dita"/>
<topicref href="RUNO0Ol.dita"/>
<!-- Hundreds of topic references to message topics ... -->
<topicref href="RUN999.dita"/>
<topicref href="messages-other.dita"/>
</topicref>
</map>

Note Because the @chunk attribute does not cascade, even if the topic reference to messages-
run.dita had child topic references, they would be unaffected by the chunk="split"
operation in this example.

Splitting all topic documents in a map
This example covers the scenario of splitting all the topic documents that are referenced in a DITA map.

Figure 27: Root map with chunking specified

Specifying chunk="split" on the <map> element sets a default for the entire map. The following
change to the DITA map results in every referenced DITA document being split into one document per
topic. The only source document that is not affected by this splitting operation is about .dita, because it
only contains only one topic.

<map chunk="split">
<title>Message guide</title>
<topicref href="about.dita">
<topicref href="messages-install.dita"/>
<topicref href="messages-run.dita"/>
<topicref href="messages-other.dita"/>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 86 of 471

</topicref>
</map>

Figure 28: Result of evaluating chunk="split"

The result of evaluating chunk="split" specified on the map element yields the following results:

* about.dita is unchanged.

* messages-install.dita is splitinto one document for each message.

e messages-run.dita is splitinto one document for each message, exactly as in the previous
example.

e messages-other.dita contains a root topic and two child topics, so it results in three
documents. The hierarchy of those documents is preserved in the map.

Figure 29: Equivalent content of source documents after evaluation
The result of evaluating the @chunk attribute is the following map:

<map>
<title>Message guide</title>
<topicref href="about.dita">
<topicref href="INSO00l.dita"/>

<!-- More topic references to installation messages ... —-->
<topicref href="RUNOOl.dita"/>
<!-- Hundreds of topic references to message topics ... -->

<topicref href="RUN999.dita"/>
<topicref href="othermsg.dita">
<topicref href="OTHER0Ol.dita"/>
<topicref href="OTHER002.dita"/>
</topicref>
</topicref>
</map>

5.4.5.6 Example: How chunk="split" affects the map hierarchy

Special attention is necessary when evaluating the map hierarchy that results from splitting documents
that contain nested topics.

Figure 30: Source DITA map with chunking specified
Consider the following DITA map:

<map chunk="split">
<title>Generation example</title>
<topicref href="ancestor.dita">
<topicref href="middle.dita">
<topicref href="child.dita"/>
</topicref>
</topicref>
</map>

Here, the @chunk attribute instructs a processor to render every topic in each of the three documents as
its own document, while preserving any hierarchy from those documents.

Figure 31: Source topic documents with nested or peer topics
Now consider the following three topic documents, each of which includes nested or peer topics:

<!-- ancestor.dita -->
<dita>
<topic id="ancestor-first">
<title>First major topic in ancestor composite document</title>

<!-- ... Topic content ... —-->
</topic>
<!-- More topics in ancestor composite document -->
dita-2.0-specification 26 August 2024

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 87 of 471

<topic id="ancestor-last">
<title>Last major topic in ancestor composite document</title>
<!-- ... Topic content ... —-->
<topic id="ancestor-last-child">
<title>Child of last major topic in ancestor composite document</title>
<!-- ... Topic content ... —-->
</topic>
</topic>
</dita>

<!-- middle.dita -->
<topic id="middle-root">
<title>Root topic in middle document</title>
<body>
Llo= 500 ==
</body>
<topic id="middle-child">
<title>Child of root topic in middle document</title>
<!-- ... Body content, maybe more children topics ... —-->
</topic>
</topic>

<!-- child.dita -->
<topic id="child">
<title>Small child topic</title>
<!-- ... Topic content ... —-->
</topic>

Figure 32: Evaluating chunk="split"

When chunk="split" is evaluated, both ancestor.dita and middle.dita are split and treated as
multiple topic documents. child.dita is only a single topic and has nothing to split.

The following list addresses how the split operation effects the map hierarchy:

* ancestor.dita hasaroot <dita> element, so it results in multiple peer topic references (or
branches) in the map. Topic references that were nested within the original reference to
ancestor.dita are now located within the reference to "ancestor-last" (the last topic child of the
<dita> element).

* middle.dita has nested topics, so it results in its own new hierarchy within the map. Content
from the nested topic reference is now located within the reference to the root topic from
middle.dita, but after any references to child topics.

Figure 33: Equivalent content of source documents after evaluation
The result of evaluating the @chunk attribute is equivalent to the following DITA map:

<map chunk="split">
<title>Generation example</title>
<topicref href="ancestor-first.dita"/>
<!-- More topics in ancestor composite document -->
<topicref href="ancestor-last.dita">
<topicref href="ancestor-last-child.dita"/>
<!-- middle.dita now located here, as final child of
final topic child of <dita> in ancestor.dita -->
<topicref href="middle-root.dita">
<topicref href="middle-child.dita"/>
<!-- child.dita now located here, as final topic of
child root topic in middle.dita ancestor.dita -->
<topicref href="child.dita"/>
</topicref>
</topicref>
</map>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 88 of 471

5.4.5.7 Example: When @chunk is ignored

The @chunk attribute is ignored in some cases, such as when chunk="combine" is already in effect or
when chunk="split" is specified on a grouping element.

Figure 34: Ignoring @chunk when already combining topics
In the following code sample, evaluating chunk="combine" results in one rendered document for each

map branch. Any additional @chunk values within those branches are ignored, including any @chunk
values within any referenced maps.

<map>
<title>Ignoring chunking when already combined</title>

<topicref href="branchOne.dita" chunk="combine">

<!-- @chunk ignored for branchOneChild.dita -->
<topicref href="branchOneChild.dita" chunk="split"/>
</topicref>

<topicref href="branchTwo.dita" chunk="combine">

<!-- Any @chunk within submap.ditamap is ignored -->
<topicref href="submap.ditamap" format="ditamap"/>
</topicref>

Figure 35: Ighoring @chunk on a grouping element

In the following code sample, chunk="split" is specified on two grouping elements.

<map>
<title>Trying to "split" groups</title>
<topicgroup chunk="split">

<topicref href="ingroupl.dita"><!--...--></topicref>
<topicref href="ingroup2.dita"><!--...--></topicref>
</topicgroup>
<topichead chunk="split">
<topicmeta>
<navtitle>Heading for a branch</navtitle>
</topicmeta>
<topicref href="inheadl.dita"><!--...--></topicref>
<topicref href="inhead2.dita"><!--...--></topicref>
</topichead>
</map>

The result of evaluating chunking is the following:

e The @chunk attribute on the <topicgroup> element is ignored. The @chunk attribute does not
cascade and there is no referenced topic, so it has no effect.

* In some cases, an implementation might treat the <topichead> element as equivalent to a
single title-only topic, while in other cases it might be ignored. In either case, the @chunk value
has no effect. If the <topichead> is treated as a title-only topic, it cannot be split further. If it is
ignored for the current processing context, it is no different than the <topicgroup> element.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 89 of 471

5.4.5.8 Example: Using chunk="combine" when the root map specifies
chunk="split"

While @chunk attributes are ignored when chunk="combine" is already in effect, it is possible to use
chunk="combine" when chunk="split" is in effect.

Figure 36: Source DITA map

Consider the following DITA map, where chunk="split" is specified on the root element. The effect of
this operation is that all topic documents within the map structure are split by default. However, a map
branch also specifies chunk="combine":

<map chunk="split">
<title>Split most, but not one branch</title>
<topicref href="splitme.dita">
<!-- More topic references -->
</topicref>
<topicref href="exception.dita" chunk="combine">
<!-- More topic references -->
</topicref>
<topicref href="splitmetoo.dita">
<!-- More topic references -->
</topicref>
</map>

Assume also that no other @chunk attributes are specified in the map.

Figure 37: Evaluation of @chunk attributes in the map

The following points are true when @chunk is evaluated:

e The document splitme.dita is rendered as one result document for each topic.. The same is
true for any other topic document within the map branch.

e The second map branch, where the outermost <topicref> elements references
exception.dita, is rendered as a single result document that combines all topic documents
within the map branch.

e The document splitmetoo.dita isrendered as one result document for each topic.. The same
is true for any other topic document within the map branch.

5.4.5.9 Example: Managing links when chunking

If a topic is referenced more than once and one of those instances involves chunking, links to that topic
might be ambiguous. In most of such cases, using key references to keys that are defined directly on the
chunked instance of the topic will give the correct result.

Figure 38: Source map and the topic documents that it references

Consider the following DITA map, which is used for all examples in this topic:

<map>
<title>Map with chunks and key definitions</title>
<!-- Key definitions -->

<keydef href="splitThis.dita" keys="splitThisKey"/>
<keydef href="splitThis.dita#splitThisChild" keys="splitThisChildKey"/>
<!-- Navigational structure -->
<topicref href="splitThis.dita" chunk="split" keys="explicitSplitKey"/>
<topicref href="combineThis.dita" chunk="combine" keys="combineThisKey">
<topicref href="combinedChild.dita" keys="combinedChildKey"/>

</topicref>

</map>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 90 of 471

The DITA map references the following topics:

<!-- splitThis.dita -->
<topic id="splitThisRoot">
<title>Root topic</title>
Cl== 400 ==
<topic id="splitThisChild">
<title>Child topic</title>

<l-- ... -=>
</topic>
</topic>
<!-- combineThis.dita -->

<topic id="combineThisRoot">
<title>Root topic</title>
Cl== 400 ==
<topic id="combineThisChild">
<title>Child topic</title>
Cl== 400 ==
</topic>
</topic>

<!-- combinedChild.dita -->

<topic id="combinedChildRoot">
<title>Topic in map branch, will be combined with parent topicref</title>
<l—= .. —=>

</topic>

Figure 39: Scenario in which the topic documents are rendered only once

Assume that the above map is a root map or a submap that is referenced in a context that does not
include any references to the above topic documents.

The topic documents that are referenced in the above map are rendered in the following ways:

e splitThis.dita, which contains two topics, is rendered as two documents. For this example,
assume the processor creates two documents with names that are based on the topic IDs:
splitThisRoot.dita and splitThisChild.dita.

e The map branch with combineThis.dita, which contains two topic references, is rendered as
one document: combineThis.dita. The document contains the merged content of both
combineThis.dita and combinedChild.dita.

Links are resolved in the following ways. Note that the document names are those listed in the above
explanation of how the topic documents are rendered in this scenario.

e Alllinks that specify href="splitThis.dita", keyref="splitThisKey", oOr
keyref="explicitSplitKey" resolve to splitThisRoot.dita, which is the only rendered
instance of the topic.

e Alllinks that specify href="splitThis.dita#splitThisChild" or
keyref="splitThisChildKey" resolve to splitThisChild.dita, which is the only
rendered instance of the topic.

* Alllinks that specify href="combinedChild.dita" or keyref="combinedChildKey"
resolve to that topic within combineThis.dita, which is the only rendered instance of the topic.

Figure 40: Scenario in which the topic documents are rendered more than once

Now assume that the above map is used as a submap in another context, where the root map also
references the three topic documents. As a result, each of the three topic documents (splitThis.dita,
combineThis.dita, and combinedChild.dita) are rendered more than once.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 91 of 471

In this scenario, the topic documents are rendered in the following ways:

» The original source document splitThis.dita is rendered twice. Based on the map above,
assume the processor creates two documents with names that are based on the topic IDs, so that
topic becomes splitThisRoot.dita and splitThisChild.dita. At the same time,
splitThis.dita is rendered in another context as a single document, with a different name.

« Based on the map above, the branch that starts with the original source document
combineThis.dita is rendered as one document combined with the content of
combinedChild.dita. At the same time, those two documents are rendered in another context
as individual documents. For this example, assume a processor generates the combined
document using the generated name combinThis-2.dita, while the documents
combineThis.dita and combinedChild.dita retain their names in the other context.

In this scenario, the links to the topic documents are now problematic:

* Alllinks in this map that use the direct URI references href="splitThis.dita",
href="splitThis.dita#splitThisChild", href="combineThis.dita", or
href="combinedChild.dita" are ambiguous. They could resolve to either the chunked
instance of the topic documents or to the individual topics in the other context. Implementations
will have to guess which topic to target: the split or combined instances of the topic documents or
the versions in the alternate context from the root map.

e Alllinks that specify keyref="splitThisKey" Or keyref="splitThisChildKey" are also
ambiguous. The key definitions are not associated explicitly with the chunked or not-chunked
instance. If key scopes are used, applications might more reliably guess that the intended target is
the split copy in this map, but this is not guaranteed.

All links that specify keyref="explicitSplitKey", keyref="combinedThisKey", oOr
keyref="combinedChildKey" are unambiguous. These links can only resolve to the chunked

instance of the topic documents, because the key definitions are defined directly within the chunked
context.

There is no way to unambiguously link to the child document that will result from splitting
splitThis.dita. Thisis because a <topicref> element that specifies @chunk can only associate a
key definition with the first or root topic in the document. While other key definition elements can be used
to associate keys with other topics in the same document, that can only be done outside of the navigation
context that uses @chunk. As a result, a processor cannot guarantee whether the intended link target is
the split topic from the chunked context or a use of the same topic in the second context.

It is possible for an implementation to define its own way to resolve this ambiguity. However, if a situation
requires both multiple instances of split topics and unambiguous cross-implementation links to those split
topics, alternate reuse mechanisms need to be considered.

Comment by Kristen J Eberlein on 03 February 2022

What do we mean by cross-implementation links? Can we rephrase this? Or simply remove the
adjective "cross-implementation™?

I think that the situation that we are targeting involves the following:

« Multiple navigational references to a topic, at least one of which is chunked
* A need to have unambiguous links to each instance of the topic

Disposition: Unassigned

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 92 of 471

6 DITA addressing

DITA provides two addressing mechanisms. DITA addresses either are direct URI-based addresses, or
they are indirect key-based addresses. Within DITA documents, individual elements are addressed by
unique identifiers specified on the @id attribute. DITA defines two fragment-identifier syntaxes; one is the
full fragment-identifier syntax, and the other is an abbreviated fragment-identifier syntax that can be used
when addressing non-topic elements from within the same topic.

Comment by Kristen J Eberlein on 01 March 2022
This needs a complete redo to be an effective introduction to the current content.

Disposition: Unassigned

6.1 @id attribute

The @id attribute assigns an identifier to DITA elements so that the elements can be referenced.

The @1id attribute is available for most elements. An element must have a valid value for the @id attribute
before it can be referenced using a fragment identifier. The requirements for the @id attribute differ
depending on whether it is used on a topic element, a map element, or an element within a topic or map.

All values for the @id attribute must be XML name tokens.

The @id attributes for <topic> and <map> elements are declared as XML attribute type ID; therefore,
they must be unique with respect to other XML IDs within the XML document that contains the topic or
map element. The @1id attribute for most other elements within topics and maps is not declared to be
XML ID; this means that XML parsers do not require that the values of those @1id attributes be unique.
However, the DITA specification requires that all IDs be unique within the context of a topic. For this
reason, tools might provide an additional layer of validation to flag violations of this rule.

Within documents that contain multiple topics, identifiers are scoped to the individual topic, excluding
child topics. The values of the @id attribute for all non-topic elements only need to be unique within that
topic. For example, within one document a section can have the same @id as another section as long as
the two are in different topics. This is true even if one of those topics is nested within the other; the scope
is determined by the closest topic element within the document hierarchy.

019 (386) Within a map document, the values of the @id attributes for all elements SHOULD
be unigue. When two elements within a map have the same value for the @id
attribute, processors MUST resolve references to that ID to the first element with
the given ID value in document order.

Figure 41: Summary of requirements for the @id attribute

Element XML attribute type for | Must be unique Required?
@id within
<map> ID document No
<topic> ID document Yes
sub-map (elements nested NMTOKEN document Usually no, with some
within a map) exceptions
dita-2.0-specification 26 August 2024

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 93 of 471

Element XML attribute type for | Must be unique Required?

@id within
sub-topic (elements nested NMTOKEN individual topic Usually no, with some
within a topic) exceptions

Note For tools that automatically assign @id attributes to elements, it is important to recognize that
the presence or absence of an @id attribute on the <fn> element will affect how the element
is processed. For most other elements, the presence of a value for the @1id attribute has no
impact on processing.

6.2 DITA linking

DITA supports many different linking elements, but they all use the same set of attributes: @format,
@href, @scope, and @type. These four attributes act as a unit.

6.2.1 The @format attribute
The @ format attribute identifies the format of the referenced resource.
The following values are explicitly supported:

dita
Indicates that the target is a DITA topic or an element in a DITA topic. Unless otherwise specified,
when @format is set to "dita", the value for the @type attribute is treated as "topic".

ditamap
Indicates that the target is a DITA map. References to submaps can occur at any point in a map.

When a topic reference specifies format="ditamap", the topic reference resolves in one of the
following ways:

Target of <topicref> Resolution of <topicref>

DITA map The hierarchy of all the topic references in the targeted map

Map branch The hierarchy of the targeted map branch

When a topic reference targets an entire DITA map and the referenced map contains a relationship
table, there are special processing implications. Because relationship tables are only valid as direct
children of the DITA map, referenced relationship tables are treated as children of the referencing
map.

Comment by Kristen J Eberlein on 03 March 2022

| think we need to have an example of the expected processing behaviour. | think it is a good
candidate for the new chapter on "DITA map processing".

Disposition: Unassigned

Note If a <topicref> element that references a map contains child <topicref> elements,
the processing behavior regarding the child <topicref> elements is undefined.

For other formats, the file extension without the "." character typically represents the format. For example,
the following are all possible values for @ format: "html", "pdf", or "txt".

If no value is explicitly specified for the @ format attribute, the following precedence rules apply:

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 94 of 471

1. Ifthe @format attribute is specified on a containing element within the map or within the related-
links section of a topic, the value cascades from the closest containing element.

2. If avalue for the @format attribute does not cascade, the processing default is used. The
processing default for the @ format attribute is determined by inspecting the value of the @href
attribute:

a. If the @href attribute specifies a file extension, the processing default for the @ format
attribute is that extension, after conversion to lower-case and with no leading period. The
only exception to this is if the extension is . xm1, in which case the default value for
@format is "dita".

b. If there is no file extension, but the @href value is an absolute URI whose scheme is
"http" or "https"”, then the processing default is "html".

c. In all other cases where no file extension is available, the processing default is "dita".

020 (386) If the actual format of the referenced content differs from the effective value of the
@format attribute, and a processor is capable of identifying such cases, it MAY
recover gracefully and treat the content as its actual format. The processor MAY
also issue a message.

For processors that support Lightweight DITA, the following table summarizes values for the @format
attribute:

Document type Value of the @format attribute Description

Map hditamap HDITA map
mditamap MDITA map
xditamap XDITA map

Topic hdita HDITA topic
mdita MDITA topic
xdita XDITA topic

6.2.2 The @href attribute

The @href attribute specifies the URI of the resource that is addressed. The referenced resource can be
another DITA topic or map, an element inside a DITA topic or map, or a non-DITA resource.

021 (386) The value of the @href attribute MUST be a valid URI reference [RFC 3986]. If the
value of the @href attribute is not a valid URI reference, an implementation MAY
generate an error message. It MAY also recover from this error condition by
attempting to convert the value to a valid URI reference.

The value of the @href attribute can optionally contain a fragment identifier.

When an @href attribute references a DITA resource using a URI without a fragment identifier, the URI
resolves to the root element in the referenced document. For the purposes of rendering, such as when a
topic reference to a DITA document is used to render the content as HTML, this means that all topics in
the target document are included in the reference. For the purpose of linking, the reference resolves to
the first topic in the document.

When an @href attribute references a DITA resource using a URI with a fragment identifier, the portion
after the hash must be a DITA local identifier. A DITA local identifier takes the following forms:

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 95 of 471

http://www.ietf.org/rfc/rfc3986.txt

Target Syntax

Topic element topicID

Element in a topic topicID/elementID
Element in a map mapElementID

Where:

» topiclD is the value of the @id attribute of the DITA topic. If the topic referenced by a DITA local
identifier is the same topic that includes the reference, then topic/D can be replaced by a period.

» elementID is the value of the @1id attribute of the non-topic element within a DITA topic.

* mapElementID is the value of the @id attribute of the element within a DITA map document.

See 7.3.9 Processing xrefs and conrefs within a conref (152) for more information on how this syntax

relates to conref resolution.

Example: Common syntax for the @href attribute

The following table includes some examples of common @href syntax. Note that these examples
represent only a few common scenarios and are not all-inclusive.

Target

Syntax

The first topic in a DITA document

href="file.dita"

A specific topic in a DITA document

href="file.dita#topicid"

A non-topic element inside a DITA topic

href="file.dita#topicid/elementid"

A non-topic element inside the same DITA topic as the
reference

href="#./elementid"

An element in a DITA map

href="myMap.ditamap#map-branch"

An image

href="exampleImage.jpg"

An external resource

href="http://www.example.org"

where:

» topicid is the value of the @id attribute on the referenced DITA topic.
» elementid is the value of the @1id attribute on the referenced (non-topic) DITA element.
* map-branch is the value of the @1id attribute on the referenced DITA map element.

6.2.3 The @scope attribute

The @scope attribute identifies the closeness of the relationship between the current document and the

target resource.
The @scope attribute takes the following values:

external

Indicates that the resource is not part of the current set of content.

local

Indicates that the resource is part of the current set of content.

peer
Indicates one of the following:

dita-2.0-specification
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

26 August 2024
Page 96 of 471

* The resource is part of the current set of content, but it might not be accessible at build time.

e The resource should be treated as a root map for the purpose of creating map-to-map key
references (peer maps).

e The resource is a peer map. If @keyscope is also specified on the reference, it indicates that
the map should be treated as a separate deliverable for the purposes of linking.

-dita-use-conref-target
See 7.3.6 Using the -dita-use-conref-target value (149) for more information on "-dita-use-conref-
target"”

If no value is specified for the @scope attribute, the following considerations apply:

» If the @scope attribute is specified on a containing element within a map or within the related-links
section, the value cascades from the closest containing element.

* In most cases, the processing default is "local". However the processing default is "external”
whenever the absolute URI in the @href attribute begins with one of the following schemes:
"http", "https", "ftp", or "mailto"

022 (386) For the @scope attribute, processors can consider additional URI schemes as
"external" by default. Processors MUST always consider relative URIs as "local" by
default.

6.2.4 The @type attribute

On linking elements, the @t ype attribute describes the target of a reference. The @type attribute is also
used on several non-linking elements for other purposes.

This topic describes how to interpret the @t ype attribute when it is used on linking elements. Usage
information for the @type attribute on other elements, such as <note> or <copyright>, is described in
the element reference topics for those elements.

If the @type attribute is specified on a linking element that references DITA content, the attribute value
should reflect the @class attribute of the referenced element. The value can be an unqualified local
name, for example, “fig", or a qualified name exactly as specified in the @class attribute, for example,
"topic/fig". Processors might ignore qualified names or consider only the local name.

If not explicitly specified on an element, the @t ype attribute value cascades from the closest containing
element. If there is no explicit value for the @type attribute specified on an ancestor element, the
processor should retrieve the type from the target resource, if it is available. If the type cannot be
determined, the processing default is "topic".

023 (386) Applications MAY issue a warning when the specified or inherited @type attribute
value does not match the target or a specialization ancestor of the target.
Applications MAY recover from this error condition by using the correct value
detected.

Only the <xref> element can link to content below the topic level. The other linking elements only can
link to topics.

The following table lists values for the @type attribute that are commonly used on <xref> elements:

Value Target element
fig <fig>
fn <fn>
dita-2.0-specification 26 August 2024

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 97 of 471

Value Target element

li
section <section>
table <table>

An application might generate cross-reference text that is based the value of the @ format attribute.

"-dita-use-conref-target" is also a valid value for the @type attribute. See 7.3.6 Using the -dita-use-conref-
target value (149) for more information.

6.3 URI-based (direct) addressing

Content reference and link relationships can be established from DITA elements by using URI references.
DITA uses URI references in @href, @conref, and other attributes for all direct addressing of resources.

URI references address resources and (in some cases) subcomponents of those resources. In this
context, a resource is a DITA document (map, topic, or DITA base document) or a non-DITA resource (for
example, an image, a Web page, or a PDF document).

URI references that are URLs must conform to the rules for URLs and URIs. Windows paths that contain
a backslash (\) are not valid URLs.

URIs and fragment identifiers

For DITA resources, fragment identifiers can be used with the URI to address individual elements. The
fragment identifier is the part of the URI that starts with a number sign (#), for example, #topicid/
elementid. URI references also can include a query component that is introduced with a question mark

?).

024 (386) DITA processors MAY ignore queries on URI references to DITA resources. URI
references that address components in the same document MAY consist of just the
fragment identifier.

For addressing DITA elements within maps and topics or individual topics within documents containing
multiple topics, URI references must include the appropriate DITA-defined fragment identifier. URI
references can be relative or absolute. A relative URI reference can consist of just a fragment identifier.
Such a reference is a reference to the document that contains the reference.

Addressing non-DITA targets using a URI

DITA can use URI references to directly address non-DITA resources. Any fragment identifier used must
conform to the fragment identifier requirements that are defined for the target media type or provided by
processors.

Addressing elements within maps using a URI

When addressing elements within maps, URI references can include a fragment identifier that includes
the ID of the map element, for example, filename.ditamap#mapId or #mapId. The same-topic, URI-
reference fragment identifier of a period (.) can not be used in URI references to elements within maps.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 98 of 471

Addressing topics using a URI

When addressing a DITA topic element, URI references can include a fragment identifier that includes the
ID of the topic element (filename.dita#topicId or #topicId). When addressing the DITA topic
element that contains the URI reference, the URI reference might include the same topic fragment
identifier of "." (#.).

Topics always can be addressed by a URI reference whose fragment identifier consists of the topic ID.
For the purposes of linking, a reference to a topic-containing document addresses the first topic within
that document in document order. For the purposes of rendering, a reference to a topic-containing
document addresses the root element of the document.

Consider the following examples:

« Given a document whose root element is a topic, a URI reference (with no fragment identifier) that
addresses that document implicitly references the topic element.

* Given a <dita> document that contains multiple topics, for the purposes of linking, a URI
reference that addresses the <dita> document implicitly references the first child topic.

« Given a <dita> document that contains multiple topics, for the purposes of rendering, a URI
reference that addresses the <dita> document implicitly references all the topics that are
contained by the <dita> element. This means that all the topics that are contained by
the<dita> element are rendered in the result.

Addressing non-topic elements using a URI

When addressing a non-topic element within a DITA topic, a URI reference must use a fragment identifier
that contains the ID of the ancestor topic element of the non-topic element being referenced, a slash ("/"),
and the ID of the non-topic element (filename.dita#topicId/elementId Or #topicId/
elementId). When addressing a non-topic element within the topic that contains the URI reference, the
URI reference can use an abbreviated fragment-identifier syntax that replaces the topic ID with "." (#. /
elementId).

This addressing model makes it possible to reliably address elements that have values for the @id
attribute that are unique within a single DITA topic, but which might not be unique within a larger XML
document that contains multiple DITA topics.

Examples: URI reference syntax
The following table shows the URI syntax for common use cases.

Use case Sample syntax

Reference a table in a topic at a network | "http://example.com/file.dita#topicID/tableID"
location

Reference a section in a topic on alocal | "directory/file.dita#topicID/sectionID"
file system

Reference a figure contained in the "#topicID/figureID"
same XML document

Reference a figure contained in the "#./figureID"
same topic of an XML document

Reference an element within a map "http://example.com/map.ditamap#elementID" (and a value of
"ditamap" for the @ format attribute)

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 99 of 471

Use case Sample syntax

Reference a map element within the "#elementID" (and a value of "ditamap" for the @ format attribute)
same map document

Reference an external Web site "http://www.example.com", "http://
www .example.comfsomefragment" or any other valid URI

Reference an element within a local "filename.ditamap#elementid" (and a value of "ditamap" for the

map @format attribute)

Reference a local map "filename.ditamap" (and a value of "ditamap" for the @ format
attribute)

Reference a local topic Reference a local topic "filename.dita" or "path/

filename.dita"

Reference a specific topic in a local "filename.dita#topicid" or "path/filename.dita#topicid"
document

Reference a specific topic in the same "#topicid"

file

Reference the same topic in the same B

XML document

Reference a peer map for cross- "../book-b/book-b.ditamap" (and a value of "ditamap" for the
deliverable linking @format attribute, a value of "peer" for the @scope attribute, and a

value for the @keyscope attribute)

6.4 Indirect key-based addressing

DITA keys provide an alternative to direct addressing. The key reference mechanism provides a layer of
indirection so that resources (for example, URIs, metadata, or variable text strings) can be defined at the
DITA map level instead of locally in each topic.

For information about using keys to define and reference controlled values, see 5.2 Subject scheme
maps and their usage (59).

Note The material in this section of the DITA specification is exceptionally complex; it is targeted at
implementers who build processors and other rendering applications.

6.4.1 Core concepts for working with keys
The concepts described below are critical for a full understanding of keys and key processing.
The use of the phases "<map> element" or "<topicref> element" should be interpreted as "<map>

element and any specialization of <map> element " or " <topicref> element or any specialization of
<topicref> element."

Definitions related to keys

resource
For the purposes of keys and key resolution, one of the following:

¢ An object addressed by URI
* Metadata specified on a resource, such as a @scope or @format attribute
e Text or metadata located within a <topicmeta> element

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 100 of 471

key
A name for a resource. See 6.4.4 Using keys for addressing (103) for more information.

key definition
A <topicref> element that binds one or more key names to zero or more resources.

key reference
An attribute that references a key, such as @keyref or @conkeyref.

key space
A list of key definitions that are used to resolve key references.

effective key definition
The definition for a key within a key space that is used to resolve references to that key. A key might
have multiple definitions within a key space, but only one of those definitions is effective.

key scope
A map or section of a map that defines its own key space and serves as the resolution context for its
key references.

Key definitions
A key definition binds one or more keys to zero or more resources. Resources can be:

« Any URI-addressed resource that is referenced directly by the @href attribute or indirectly by the
@keyref attribute on the key definition. References to the key are considered references to the
URI-addressed resource.

» (If the key definition contains a child <topicmeta> element) The child elements of the
<topicmeta> element. The content of those elements can be used to populate the content of
elements that reference the key.

If a key definition does not contain a <topicmeta> element and does not refer to a resource by @href
or Rkeyref, it is nonetheless a valid key definition. References to the key definition are considered
resolvable, but no linking or content transclusion occurs.

Key scopes

All key definitions and key references exist within a key scope. If the @keyscope attribute is never
specified within the map hierarchy, all keys exist within a single, default key scope.

Additional key scopes are created when the @keyscope attribute is used. The Rkeyscope attribute
specifies a name or names for the scope. Within a map hierarchy, key scopes are bounded by the
following:

e The root map.

« The root element of submaps when the root elements of the submaps specify the @keyscope
attribute

* Any <topicref> elements that specify the @Rkeyscope attribute

Key spaces

The key space associated with a key scope is used to resolve all key references that occur immediately
within that scope. Key references in child scopes are resolved using the key spaces that are associated
with those child scopes.

A key scope is associated with exactly one key space. That key space contains all key definitions that are
located directly within the scope; it might also contain definitions that exist in other scopes. Specifically,

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 101 of 471

the key space associated with a key scope is comprised of the following key definitions, in order of
precedence:

1. All key definitions from the key space associated with the parent key scope, if any.

2. Key definitions within the scope-defining element, including those defined in directly-addressed,
locally-scoped submaps, but excluding those defined in child scopes. (Keys defined in child
scopes cannot be addressed without qualifiers.)

3. The key definitions from child scopes, with each key prepended by the child scope name followed
by a period. If a child scope has multiple names, the keys in that scope are addressable from the
parent scope using any of the scope names as a prefix.

Note Because of rules 1 and 3, the key space that is associated with a child scope includes the
scope-qualified copies of its own keys that are inherited from the key space of the parent
scope, as well as those from other "sibling" scopes.

Effective key definitions

A key space can contain many definitions for a given key, but only one definition is effective for the
purpose of resolving key references.

When a key has a definition in the key space that is inherited from a parent scope, that definition is
effective. Otherwise, a key definition is effective if it is first in a breadth-first traversal of the locally-scoped
submaps beneath the scope-defining element. Put another way, a key definition is effective if it is the first
definition for that key name in the shallowest map that contains that key definition. This allows higher-
level map authors to override keys defined in referenced submaps.

Note A key definition that specifies more than one key name in its @keys attribute might be the
effective definition for some of its keys but not for others.

Within a key scope, keys do not have to be defined before they are referenced. The key space is effective
for the entire scope, so the order of key definitions and key references relative to one another is not
significant. This has the following implications for processors:

« All key spaces for a root map must be determined before any key reference processing can be
performed.

* Maps referenced solely by key reference have no bearing on key space contents.

For purposes of key definition precedence, the scope-qualified key definitions from a child scope are
considered to occur at the location of the scope-defining element within the parent scope. See 6.4.14.5
Example: How key scopes affect key precedence (126) for more information.

6.4.2 Setting key names with the @keys attribute

A @keys attribute consists of one or more space-separated keys. Map authors define keys using a
<topicref> or <topicref> specialization that contains the @keys attribute. Each key definition
introduces an identifier for a resource referenced from a map. Keys resolve to the resources given as the
@href value on the key definition <topicref> element, to content contained within the key definition
<topicref> element, or both.

Comment by robander on 19 May 2021

This topic was moved from the langref; it needs to be here as it defines normative rules about the
syntax of a key attribute. The following paragraph comes from reuse-general but in the base spec this
is the only use, so should probably be taken out of the reuse file. Need to go over this section more
closely now that attribute content has moved here.

Disposition: Unassigned

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 102 of 471

The @keys attribute uses the following syntax:

* The value of the @keys attribute is one or more space-separated key names.
« Key names consist of characters that are legal in a URI. The case of key names is significant.

» The following characters are prohibited in key names: "{", "}", "[", "I", "/", "#", "?", and whitespace
characters.

A key cannot resolve to sub-topic elements, although a @keyref attribute can do so by combining a key
with a sub-topic element id.

Related concepts

Indirect key-based addressing (100)

DITA keys provide an alternative to direct addressing. The key reference mechanism provides a layer
of indirection so that resources (for example, URIs, metadata, or variable text strings) can be defined
at the DITA map level instead of locally in each topic.

6.4.3 The @keyref attribute

The @keyref attribute provides an indirect, late-bound reference to topics, to collections of topics
(ditabase), to maps, to referenceable portions of maps, to non-DITA documents, to external URIs, or to
XML content contained within a key definition topic reference. When the DITA content is processed, the
key references are resolved using key definitions from DITA maps.

Comment by robander
This topic moved from the arch spec section. It needs editing for

» Overlap with existing content - likely needs to merge, definitely remove duplication

» This topic uses a key and the langRef links to it from the definition for @keyref, so if this topic
goes away, be sure to update that keyref

Disposition: Unassigned

For elements that only refer to topics or non-DITA resources, the value of the @keyref attribute is a key
name. For elements that can refer to elements within maps or topics, the value of the Rkeyref attribute
is a key name, a slash ("/"), and the ID of the target element, where the key name must be bound to either
the map or topic that contains the target element.

Related concepts

Indirect key-based addressing (100)

DITA keys provide an alternative to direct addressing. The key reference mechanism provides a layer
of indirection so that resources (for example, URIs, metadata, or variable text strings) can be defined
at the DITA map level instead of locally in each topic.

6.4.4 Using keys for addressing

For topic references, image references, and other link relationships, resources can be indirectly
addressed by using the @keyref attribute. For content reference relationships, resources can be
indirectly addressed by using the @conkeyref attribute.

Syntax

For references to topics, maps, and non-DITA resources, the value of the @keyref attribute is simply a
key name (for example, keyref="topic-key").

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 103 of 471

For references to non-topic elements within topics, the value of the @keyref attribute is a key name, a
slash ("/"), and the ID of the target element (for example, keyref="topic-key/some-element-id".)

Example
For example, consider this topic in the document file.dita:

<topic id="topicid">
<title>Example referenced topic</title>
<body>
<section id="section-01">Some content.</section>
</body>
</topic>

and this key definition:

<map>
<topicref keys="myexample"
href="file.dita"
/>
</map>

A cross reference of the form keyref="myexample/section-01" resolves to the <section>
element in the topic. The key reference is equivalent to the URI reference
xref="file.dita#topicid/section-01".

6.4.5 Key scopes

Key scopes enable map authors to specify different sets of key definitions for different map branches.

A key scope is defined by a <map> or <topicref> element that specifies the @keyscope attribute. The
@keyscope attribute specifies the names of the scope, separated by spaces. The legal characters for a
key scope name are the same as those for keys.

A key scope includes the following components:

* The scope-defining element

* The elements that are contained by the scope-defining element, minus the elements that are
contained by child key scopes

* The elements that are referenced by the scope-defining element or its descendants, minus the
elements that are contained by child key scopes

If the @keyscope attribute is specified on both a reference to a DITA map and the root element of the
referenced map, only one scope is created; the submap does not create another level of scope hierarchy.
The single key scope that results from this scenario has multiple names; its names are the union of the
values of the @keyscope attribute on the map reference and the root element of the submap. This
means that processors can resolve references to both the key scopes specified on the map reference and
the key scopes specified on the root element of the submap.

The root element of a root map always defines a key scope, regardless of whether a @Rkeyscope attribute
is present. All key definitions and key references exist within a key scope, even if it is an unnamed,
implicit key scope that is defined by the root element in the root map.

Each key scope has its own key space that is used to resolve the key references that occur within the
scope. The key space that is associated with a key scope includes all of the key definitions within the key
scope. This means that different key scopes can have different effective key definitions:

» A given key can be defined in one scope, but not another.
« A given key also can be defined differently in different key scopes.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 104 of 471

Key references in each key scope are resolved using the effective key definition that is specified within its
own key scope.

Example: Key scopes specified on both the map reference and the root element of
the submap

Consider the following scenario:
Figure 42: Root map

<map>
<mapref keyscope="A" href="installation.ditamap"/>
<l== ... ==>

</map>

Figure 43: installation.ditamap

<map keyscope="B">
Kll== (50 ==>
</map>

Only one key scope is created; it has key scope names of "A" and "B".

6.4.6 The @keyscope attribute

The @keyscope attribute consists of one or more space-separated key scope names. Map authors
define the boundaries for key scopes by specifying the @keyscope attribute on <map> elements,
<topicref> elements, or elements that are specializations of <map> or <topicref>. Such elements,
their contents, and any locally-scoped content referenced from within the element, are considered to be
part of the scope. Keys defined within a scope are only directly referenceable from within the same
scope. They can be referenced from the parent scope using the scope's name, followed by a period,
followed by the key name.

Comment by robander on 19 May 2021

This topic contains a lot of processor / implementation rules and was moved from the langref to the
archspec seciton about keys. Need to merge with existing key scope rules to ensure no duplication / no
conflicting content.

Update Oct 14 2021: there is now a longer example of the non-intersecting behavior in 6.4.14.6
Example: How key scopes with the same name interact (128) so probably want to remove the simpler
example from this page

Disposition: Unassigned

All key scopes are contiguous and non-intersecting. Within a root map, two distinct key scopes with the
same name have no relationship with each other aside from that implied by their relative locations in the
key scope hierarchy. They do not, for example, share key definitions. The only processing impact of a key
scope's names is in defining the prefixes used when contributing qualified key names to the parent scope.
For example, consider the following map segment;

<map>
<topicgroup keyscope="xyz" id="scopel'">
<keydef keys="a" id="defl"/>
<!-- other topic references -->
</topicgroup>
<topicgroup keyscope="xyz" id="scope2">
<keydef keys="a" id="def2"/>
<!-- other topic references -->
</topicgroup>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 105 of 471

<!-- lots of other content -->
</map>

This map creates two distinct scopes that happen to use the same name ("xyz"). This results in the
following:

e Each <topicgroup> sets a scope of "xyz" and includes a key "a". From outside of those two
scopes, references to keyref="xyz.a" (key "a" within the scope "xyz") will always resolve to
the first instance of that value, which is in the first <topicgroup>.

e Within the first <topicgroup>, content uses keyref="a" will resolve to the key in that branch
(defined on the element with id="def1").

« Within the second <topicgroup>, content uses keyref="a" will resolve to the key in that
branch (defined on the element with id="def2").

6.4.7 Addressing keys across scopes

When referencing key definitions that are defined in a different key scope, key nhames might need to be
qualified with key scope names.

A root map might contain any number of key scopes; relationships between key scopes are discussed
using the following terms:

child scope
A key scope that occurs directly within another key scope. For example, in the figure below, key
scopes "A-1" and "A-2" are child scopes of key scope "A".

parent scope
A key scope that occurs one level above another key scope. For example, in the figure below, key
scope "A" is a parent scope of key scopes "A-1" and "A-2".

ancestor scope
A key scope that occurs any level above another key scope. For example, in the figure below, key
scopes "A" and "Root" are both ancestor scopes of key scopes "A-1" and "A-2"

descendant scope
A key scope that occurs any level below another key scope. For example, in the figure below, key
scopes "A", "A-1", and "A-2" are all descendant scopes of the implicit, root key scope

sibling scope
A key scope that shares a common parent with another key scope. For example, in the figure below,
key scopes "A" and "B" are sibling scopes; they both are children of the implicit, root key scope.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 106 of 471

key scope hierarchy
A key scope and all of its descendant scopes.

Figure 44: A key scope hierarchy

A-1
A
A-2
Root
B-1
B
B-2

Keys that are defined in parent key scopes

The key space that is associated with a key scope also includes all key definitions from its parent key
scope. If a key name is defined in both a key scope and its parent scope, the key definition in the parent
scope takes precedence. This means that a key definition in a parent scope overrides all definitions for
the same key name in all descendant scopes. This enables map authors to override the keys that are
defined in submaps, regardless of whether the submaps define key scopes.

In certain complex cases, a scope-qualified key name (such as "scope.key") can override an unqualified
key name from the parent scope. See 6.4.14.5 Example: How key scopes affect key precedence (126).

Keys that are defined in child key scopes

The key space associated with a key scope does not include the unqualified key definitions from the child
scopes. However, it does include scope-qualified keys from the child scopes. This enables sibling key
scopes to have different key definitions for the same key name.

A scope-qualified key name is a key name, prepended by one or more key scope names and separated
by periods. For example, to reference a key "keyName" defined in a child scope named "keyScope”,
specify keyref="keyScope. keyName".

If a key scope has multiple names, its keys can be addressed from its parent scope using any of the
scope names. For example, if a key scope is defined with keyscope="a b c", and it contains a key
name of "product”, that key can be referenced from the parent scope by keyref="a.product",
keyref="b.product", or keyref="c.product"

Because a child scope contributes its scope-qualified keys to its parent scope, and that parent scope
contributes jts scope-qualified keys to its parent scope, it is possible to address the keys in any
descendant scope by using the scope-qualified key name. For example, consider a key scope named
"ancestorScope" that has a child scope named "parentScope" which in turn has a child scope named
"childScope". The scope "childScope" defines a key named "keyName". To reference the key "keyName"

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 107 of 471

from scope "ancestorScope”, specify the scope-qualified key name:
keyref="parentScope.childScope.keyName".

Keys that are defined in sibling key scopes

Because a parent key scope contains scope-qualified keys from all of its child scopes, and a child scope
inherits all of the key definitions (including scope-qualified keys) from its parent scope, it is possible for a
child scope to reference its own scope-qualified keys, as well as those defined by its sibling scopes.

For example, consider two sibling scopes, "scopel" and "scope2". Each scope defines the key
"productName". References to "productName" in each scope resolve to the local definition. However,
since each scope inherits the scope-qualified keys that are available in their parent scope, either scope
can reference "scopel.productName" and "scope2.productName" to refer to the scope-specific definitions
for that key.

6.4.8 Cross-deliverable addressing and linking

A map can use scoped keys to reference keys that are defined in a different root map. This cross-
deliverable addressing can support the production of deliverables that contain working links to other
deliverables.

When maps are referenced and the value of the @scope attribute is set to "peer", the implications are that
the two maps are managed in tandem, and that the author of the referencing map might have access to
the referenced map. Adding a key scope to the reference indicates that the peer map should be treated
as a separate deliverable for the purposes of linking.

Comment by Kristen J Eberlein on 19 April 2022

When this topic is reviewed, we should also check the definition of scope="peer" in the @scope
topic.

Disposition: Unassigned

The keys that are defined by the peer map belong to any key scopes that are declared on the
<topicref> element that references that map. Such keys can be referenced from content in the
referencing map by using scope-qualified key names. However, processors handle references to keys
that are defined in peer maps differently from how they handle references to keys that are defined in
submaps.

DITA processors are not required to resolve key references to peer maps. However, if all resources are
available in the same processing or management context, processors have the potential to resolve key
references to peer maps. There might be performance, scale, and user interface challenges in
implementing such systems, but the ability to resolve any given reference is ensured when the source
files are physically accessible.

Comment by Kristen J Eberlein on 04 July 2019

Should the following statement about what processors do "when a reference to a peer map cannot be
resolved" contain RFC-2119 language?

Disposition: Unassigned

Note the inverse implication; if the peer map is not available, then it is impossible to resolve the key
reference. Processors that resolve key references to peer maps should provide appropriate messages
when a reference to a peer map cannot be resolved. Depending on how DITA resources are authored,

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 108 of 471

managed, and processed, references to peer maps might not be resolvable at certain points in the
content life cycle.

The peer map might specify @keyscope on its root element. In that case, the @keyscope on the peer
map is ignored for the purpose of resolving scoped key references from the referencing map. This avoids
the need for processors to have access to the peer map in order to determine whether a given key
definition comes from the peer map.

Example: A root map that declares a peer map

Consider the DITA maps map-a.ditamap and map-b.ditamap. Map A designates Map B as a peer
map by using the following markup:

<map>
<title>Map A</title>
<topicref
scope="peer"
format="ditamap"
keyscope="map-b"

href="../map-b/map-b.ditamap"
processing-role="resource-only"
/>
L= -—>
</map>

In this example, map-b.ditamap is not a submap of Map A; it is a peer map.

Example: Key resolution in a peer map that contains a @keyscope attribute on the
root element

Consider the map reference in map Map A:

<mapref
keyscope="scope-b"
scope="peer"
href="map-b.ditamap"
/>

where map-b.ditamap contains the following markup:

<map keyscope="product-x">
Llo= 5, ==>
</map>

From the context of Map A, key references of the form "scope-b.somekey" are resolved to keys that are
defined in the global scope of map B, but key references of the form "product-x.somekey" are not. The
presence of a Rkeyscope attribute on the <map> element in Map B has no effect. A key reference to the
scope "scope-b.somekey" is equivalent to the unscoped reference "somekey" when processed in the
context of Map B as the root map. In both cases, the presence of @keyscope on the root element of Map
B has no effect; in the first case it is explicitly ignored, and in the second case the key reference is within
the scope "product-x" and so does not need to be scope qualified.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 109 of 471

6.4.9 Processing key references

Key references can resolve as links, as text, or as both. Within a map, they also can be used to create or
supplement information on a topic reference. This topic covers information that is common to all key
processing, regardless of how the key is used.

Processing of undefined keys

025 (386) If both @keyref and @href attributes are specified on an element, the @href
value MUST be used as a fallback address when the key name is undefined. If both
@conkeyref and Qconref attributes are specified on an element, the @conref
value MUST be used as a fallback address when the key name is undefined.

Determining effective attributes on the key-referencing element

The attributes that are common to the key-defining element and the key-referencing element, other than
the Qkeys, @processing-role, and @id attributes, are combined as for content references, including
the special processing for the @xml:1lang, @dir, and @translate attributes.

Keys and conditional processing

026 (387) The effective key definitions for a key space might be affected by conditional
processing (filtering). Processors SHOULD perform conditional processing before
determining the effective key definitions. However, processors might determine
effective key definitions before filtering. Consequently, different processors might
produce different effective bindings for the same map when there are key
definitions that might be filtered out based on their filtering attributes.

Note In order to retain backwards compatibility with DITA 1.0 and 1.1, the specification does not
mandate a processing order for different DITA features. This makes it technically possible to
determine an effective key definition, resolve references to that key definition, and then filter
out the definition. However, the preferred approach is to take conditional processing into
account when resolving keys, so that key definitions which are excluded by processing are
not used in resolving key references.

Reusing a topic in multiple key scopes

027 (387) If a topic that contains key references is reused in multiple key scopes within a
given root map such that its references resolve differently in each use context,
processors MUST produce multiple copies of the source topic in resolved output for
each distinct set of effective key definitions that are referenced by the topic.

In such cases, authors can use <resourceid> within topic references to specify distinct anchor
components for each instance of the topic.

with the Rappid-role attribute set to "deliverable-anchor" to specify different source URIs for each
reference to a topic.

Error conditions

028 (387) If a referencing element contains a key reference with an undefined key, it is
processed as if there were no key reference, and the value of the @href attribute is
used as the reference. If the @href attribute is not specified, the element is not

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 110 of 471

treated as a navigation link. If it is an error for the element to be empty, an
implementation MAY give an error message; it also MAY recover from this error
condition by leaving the key reference element empty.

6.4.10 Processing key references for navigation links and images
Keys can be used to create or redirect links and cross references. Keys also can be used to address

resources such as images or videos. This topic explains how to evaluate key references on links and
cross references to determine a link target.

When a key definition is bound to a resource that is addressed by the @href or Rkeyref attributes, and
does not specify "none" for the @1inking attribute, all references to that key definition become links to
the bound resource. When a key definition is not bound to a resource or specifies "none" for the
@linking attribute, references to that key definition do not become links.

When a key definition has no @href value and no Rkeyref value, references to that key will not result in
a link, even if they do contain an @href attribute of their own. If the key definition also does not contain a
<topicmeta> subelement, empty elements that refer to the key (such as <1ink keyref="a"/> or
<xref keyref="a" href="fallback.dita"/>) areignored.

The <object> element has an additional key-referencing attribute named @datakeyref. Key names in
this attribute are resolved using the same processing that is described for the normal @keyref attribute.

6.4.11 Processing key references on <topicref> elements

While <topicref> elements are used to define keys, they also can reference keys that are defined
elsewhere. This topic explains how to evaluate key references on <topicref> elements and its
specializations.

Determining the effective resource

029 For topic references that use the @keyref attribute, the effective resource
(387) bound to the <topicref> element is determined by resolving all
intermediate key references. Each key reference is resolved either to a
resource addressed directly by URI reference in an @href attribute, or to
no resource. Processors MAY impose reasonable limits on the number of
intermediate key references that they will resolve. Processors SHOULD
support at least three levels of key references.

Note This rule applies to all topic references, including those that define keys. The effective
bound resource for a key definition that uses the @keyref attribute cannot be
determined until the key space has been constructed.

Combining metadata

Content from a key-defining element cascades to the key-referencing element following the rules for
combining metadata between maps and other maps and between maps and topics.

The combined attributes and content cascade from one map to another or from a map to a topic, but
this is controlled by existing rules for cascading, which are not affected by the use of key references.

If, in addition to the @keys attribute, a key definition specifies a @keyref attribute that can be resolved
after the key resolution context for the key definition has been determined, the resources bound to the
referenced key definition take precedence.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 111 of 471

6.4.12 Processing key references to generate text or link text

Variable text can be specified by key definitions. Processors determine the effective text by retrieving the
content of elements in a specific sequence.

Empty elements

Empty elements that specify a key reference might get their effective content from the referenced key
definitions. For the purpose of determining variable text, empty elements are defined as elements
that meet the following criteria:

L]

Have no text content, including white space
Have no sub-elements
Have no attributes that would be used as text content

Key definitions with child <topicmeta> elements

When an empty element references a key definition that has a child <topicmeta> element, content
from that <topicmeta> element is used to determine the effective content of the referencing
element. Effective content from the key definition becomes the element content, with the following
exceptions:

For empty 

9.3.2.2 <cite>
A citation is the name or the title of a bibliographic resource, for example, a document, online article, or

instructional video.
Rendering expectations
The content of the <cite>element is typically rendered in a way that distinguishes it from the

surrounding text.

Example
The following code sample shows how the <cite> element can be used to mark up the title of an article:

<p>The online article <cite>Specialization in the Darwin Information Typing
Architecture</cite> provides a detailed explanation of how to define new
topic types.</p>

9.3.2.3 <dd>
The definition description is the definition for an item in a definition list entry.

Attributes

The following attributes are available on this element: universal attributes (362).

Example
See <d1> (218).

9.3.2.4 <ddhd>
A definition heading is an optional heading or title for descriptions or definitions in a definition list.

Attributes

The following attributes are available on this element: universal attributes (362).

Example
See <dlhead> (219).

9.3.2.5 <desc>
A description is a statement that describes or contains additional information about an object.

Usage information

The following list outlines common uses of the <desc> element:

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 216 of 471

<table> and <fig>
Provides more information than can be contained in the title
<xref> and <link>
Provides a description of the target
<object>
Provides alternate content to use when the context does not permit the object to be displayed

Rendering expectations
067 (391) When used in conjunction with <fig> or <table> elements, processors SHOULD
consider the content of <desc> elements to be part of the content flow.

When used in conjunction with <xref> or <1ink> elements, processors often
render the content of <desc> elements as hover help or other forms of link preview.

Attributes

The following attributes are available on this element: universal attributes (362).

Examples

This section contains examples of how the <desc> element can be used.

Figure 91: Description of a figure

In the following code sample, the <figure> element contains a reference to an image of a famous

painting by Leonardo da Vinci. The <title> element provides the name of the painting, while the
<desc> element contains information about when the portrait is thought to have been painted.

<fig>
<title>Mona Lisa</title>
<desc>Circa 1503-06, perhaps continuing until 1517</desc>
<image href="mona-lisa.jpg">
<alt>Photograph of Mona Lisa painting</alt>
</image>
</fig>

Figure 92: Description of a cross reference

In the following code sample, the <1ink> element contains a <desc> element. Some processors might
render the content of the <desc> element as hover help.

<link keyref="dita-13-02">

<linktext>DITA 1.3 Errata 02</linktext>

<desc>Final errata version of DITA 1.3, published 19 June 2018</desc>
</link>

9.3.2.6 <div>
A division is a grouping of contiguous content within a topic. There is no additional semantic meaning.

Usage information

The <div> element is useful primarily for reuse and as a specialization base.

Attributes

The following attributes are available on this element: universal attributes (362).

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 217 of 471

Example

In the following code sample, a <div> element is used to organize several elements together so that they
can be referenced by @conref or @Gconkeyref:

<div id="rendered-table">
<p>The following screen capture shows one way the code sample might be rendered:</p>
<image keyref="rendered-table" placement="break"/>

</div>

Without using a <div> element, the content could not be grouped for content referencing since the start
and end elements are of different types.

9.3.2.7 <dI>

A definition list is a list of items and their corresponding definitions.

Rendering expectations
A definition list is typically rendered in the following way:

« The definition term is located against the starting margin of the page or column.

» The definition description is indented. It is located either on the same line as the definition term, or
it is placed on the next line.
« The optional header content is located on a line before the definition list entries.

Attributes

The following attributes are available on this element: universal attributes (362) and @compact (371).

Example

The following code sample shows how a definition list can be used to describe the message levels that
are generated by a monitoring application. The @compact attribute instructs processors to tighten the
vertical spacing.

<dl compact="yes">
<dlentry>
<dt>Warning</dt>
<dd>Problems were detected, but the software will continue to monitor activity.</dd>
</dlentry>
<dlentry>
<dt>Error</dt>
<dd>Problems were detected, and the software is in danger of shutting down.</dd>
</dlentry>
<dlentry>
<dt>Severe</dt>
<dd>Monitoring activity has ceased.</dd>
</dlentry>
</d1>

9.3.2.8 <dlentry>
A definition list entry is a group within a definition list. It contains an item and its definitions.

Attributes

The following attributes are available on this element: universal attributes (362).

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 218 of 471

Example
See <d1> (218).

9.3.2.9 <dlhead>

A definition list heading is a group that contains a heading for items and a heading for definitions within
the list.

Attributes

The following attributes are available on this element: universal attributes (362).

Example
The following code sample shows a definition list with a header:

<dl>
<dlhead>
<dthd>Image selection</dthd>
<ddhd>Resulting information</ddhd>
</dlhead>
<dlentry>
<dt>File Type</dt>
<dd>The file extension of the image</dd>
</dlentry>
<dlentry>
<dt>Image class</dt>
<dd>Whether the image is raster, vector, or 3D</dd>
</dlentry>
<dlentry>
<dt>Fonts</dt>
<dd>Names of the fonts contained within a vector image</dd>
</dlentry>
</d1l>

Rendering of definition lists will vary by application and by display format.

9.3.2.10 <draft-comment>

A draft comment is content that is intended for review and discussion, such as questions, comments, and
notes to reviewers. This content is not intended to be included in production output.

Rendering expectations

068 (392) By default, processors SHOULD NOT render <draft-comment> elements.
Processors SHOULD provide a mechanism that causes the content of the
<draft-comment> element to be rendered in draft output only.

Attributes

The following attributes are available on this element: universal attributes (362) and the attributes defined
below.

@author

Designates the originator of the draft comment.
@disposition

Specifies the status of the draft comment.

@time
Specifies when the draft comment was created.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 219 of 471

For this element, the @translate attribute has a default value of "no".

Example

The following code samples shows how a content developer can use a <draft-comment> element to
pose a question to reviewers. Note that the @author and @time attributes are used to provide
information who created the draft comment and when it was created.

<draft-comment author="EBP" time="23 May 2017">
<p>Where's the usage information for this section?</p>
</draft-comment>

Processors might render the information from the highlighted attributes at viewing or publishing time.
Authors might use the value of the @disposition attribute to track the work that remains to be done on
a content collection.

9.3.2.11 <dt>

A definition term is the item that is defined in a definition list entry.

Attributes

The following attributes are available on this element: universal attributes (362).

Example
See <d1> (218).

9.3.2.12 <dthd>
A definition term heading is an optional heading or title for the items in a definition list.

Attributes

The following attributes are available on this element: universal attributes (362).

Example
See <dlhead> (219).

9.3.2.13 <example>
An example illustrates the subject of the topic or a portion of the topic.

Usage information

For maximum flexibility in creating specializations, examples allow plain text as well as phrase and block
level elements. Because of the way XML grammars are defined within a DTD, any element that allows
plain text cannot restrict the order or frequency of other elements. As a result, the <example> element
allows <title> to appear anywhere as a child of <example>. However, the intent of the specification is
that <title> only be used once in any <example>, and when used, that it precede any other text or
element content.

Rendering expectations

069 (392) Processors SHOULD treat the presence of more than one <title> elementin a
<example> element as an error.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 220 of 471

Attributes

The following attributes are available on this element: universal attributes (362).

Example
The following code sample shows an <example> element that contains a code block and a textual
explanation of it:

<section id="AddingRecord">
<title>ADD</title>
<p>New database records are created using the <cmdname>ADD</cmdname> command.</p>
<example>
<p>The following example illustrates the creation of a new record. All parameter settings
are strictly optional.</p>
<codeblock>01 OPTIONS ABRC,ADD,DEF,HIJK, LMNO,AOW=25000,HF=2</codeblock>
</example>
</section>

9.3.2.14 <fallback>

Fallback content is content to be presented when multimedia objects or included content cannot be
rendered.

Processing expectations

The contents of this element are displayed only when the media that is referenced by the containing
element cannot be displayed or viewed.

Attributes

The following attributes are available on this element: universal attributes (362).

Example
See <audio> (244) and <video> (248).

9.3.2.15 <fig>

A figure is a container for a variety of objects, including artwork, images, code samples, equations, and
tables.

Usage information

A <fig> element enables associating other elements, such as a title or description, with the contents of
the <fig> element.

Attributes

The following attributes are available on this element: display attributes (368) and universal attributes
(362).

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 221 of 471

Example

The following code sample shows how a <fig> element can associate a title and a description with an
image:
<fig>
<title>The handshake</title>
<desc>This image shows two hands clasped in a formal, business-like handshake.</desc>
<image href="59j0p66.jpg">
<alt>A handshake</alt>

</image>
</fig>

9.3.2.16 <figgroup>

A figure group is a grouping of segments within a figure.

Usage information

The <figgroup> element is useful primarily as a base for complex specializations, such as nestable
groups of syntax within a syntax diagram. The <figgroup> element can nest. It can also contain
multiple cross-references, footnotes, and keywords.

Attributes

The following attributes are available on this element: universal attributes (362).

Example

For the most part, <figgroup> is intended to be used as a base for specialization. This example uses it
directly for purposes of illustration.

The following code sample shows how the <figgroup> can group content with associated metadata:

<fig>
<title>Sample complex figure</title>
<figgroup>
<data name="Metaltem" value="13"/>
<data name="MetaThing" value="31"/>
<ph>These elements are grouped with associated metadata</ph>
</figgroup>
</fig>

9.3.2.17 <fn>

A footnote is ancillary information that typically is rendered in the footer of a page or at the end of an
online article. Such content is usually inappropriate for inline inclusion.

Usage information
There are two types of footnotes: single-use footnote and use-by-reference footnote.

Single-use footnote
This is produced by a <fn> element that does not specify a value for the @id attribute.

Use-by-reference footnote
This is produced by a <fn> element that specifies a value for the @id attribute. It must be used in
conjunction with an <xref> element with @type set to "fn".

To reference a footnote that is located in another topic, the conref or conkeyref mechanism is used.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 222 of 471

Rendering expectations
The two footnote types typically produce different types of output:

Single-use footnote
When rendered, a superscript symbol (humeral or character) is produced at the location of the <fn>
element. The superscript symbol is hyperlinked to the content of the footnote, which is placed at the
bottom of a PDF page or the end of an online article. The superscript symbol can be specified by the
value of the @callout attribute. When no @callout value is specified, footnotes are typically
numbered.

Use-by-reference footnote
Nothing is rendered at the location of the <fn> element. The content of a use-by-reference footnote
is only rendered when it is referenced by an <xref> with the @t ype attribute set to "fn". If an
<xref> with the @type attribute set to "fn" is present, a superscript symbol is rendered at the
location of the <xref> element. Unless conref or conkeyref is used, the <fn> and <xref> must be
located in the same topic.

However, the details of footnote processing and formatting are implementation dependent. For example,
a tool that renders DITA as PDF might lack support for the @callout attribute, or footnotes might be
collected as end notes for certain types of publications.

Attributes

The following attributes are available on this element: universal attributes (362) and the attribute defined
below.

@callout
Specifies the character or character string that is used for the footnote link.

Examples
This section contains examples of how the <fn> element can be used.

Figure 93: An example of a single-use footnote

The following code sample shows a single-use footnote. It contains a simple <fn> element, with no @id
or @callout attribute.

<p>The memory storage capacity of the computer is 2 GB
<fn>A GB (gigabyte) is equal to 1000 million bytes</fn>
with error correcting support.</p>

When rendered, typically a superscript symbol is placed at the location of the <fn> element; this
superscript symbol is hyperlinked to the content of the <£n>, which is typically placed at the bottom of a
PDF page or the end of an online article. The type of symbol used is implementation specific.

The above code sample might produce the following output similar to the following:

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 223 of 471

The memory storage capacity of the computer is 2 GB! with error correcting support. 1

1. A GB (gigabyte) is equal to 1000 million bytes.
Page 365

Figure 94: An example of a single-use footnote with a @callout attribute
The following code sample shows a single-use footnote that uses a @callout attribute:

<p>The memory storage capacity of the computer is 2 GB
<fn callout="#">A GB (gigabyte) is equal to 1000 million bytes</fn>
with error correcting support.</p>

The rendered output is similar to that of the previous example, although processors that support it will
render the footnote symbol as # (hashtag).

Figure 95: A use-by-reference footnote

The following code sample shows use-by-reference footnotes. The <fn> elements have @id attributes,
and inline <xre f> elements reference those <fn> elements:

<section>
<fn id="dog-name">Fido</fn>
<fn id="cat-name">Puss</fn>
<fn id="llama-name">My llama</fn>
Llle= 50 =22
<p>I like pets. At my house, I have
a dog<xref href="#topic/dog-name" type="£fn"/>,
a cat<xref href="#topic/cat-name" type="fn"/>, and
a llama<xref href="#topic/llama-name" type="£fn"/>.
</p>
</section>

The code sample might produce output similar to the following:

1 like pets. At my house, I have a dog!, a cat?, and a llama3.

Fido
Puss
My Llama

W=

Figure 96: A single-use footnote that uses conref
The following code sample shows footnotes stored in a shared topic (footnotes.dita):

<!-- Content from footnotes.dita -->
<topic id="footnotes">
<title>Shared topic...</title>
<body>
<bodydiv>
<fn id="strunk">Elements of Style</fn>
<fn id="DQTI">Developing Quality Technical Information, 2nd edition</fn>
o= 500 ==
</bodydiv>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 224 of 471

</body>
</topic>

To use those footnotes, authors conref them into the relevant topics:

<p>See the online resource<fn conref="footnotes.dita#footnotes/DQTI"/> for more
information about how to assess the quality of technical documentation ...</p>

Figure 97: A use-by-reference footnote that uses conref
The following code sample shows a use-by-reference footnote that uses conref:

<topic id="evaluating-quality">
<title>Evaluating documentation quality</title>
<body>
<bodydiv>
<fn conref="footnotes.dita#footnotes/DQTI" id="dqti"/>
</bodydiv>
== 00 ==2
<p>See the online resource<xref="#./dqti" type="£fn"/> for more
information about how to assess the quality of technical documentation./p>
ll== 00 ==
</body>
<topic>

9.3.2.18 

9.3.2.19 <include>

Included content is a reference to non-DITA content outside the current document that will be rendered at
the location of the reference. The resource is specified using either a URI or a key reference. Processing
expectations for the referenced data can also be specified.

Usage information
The <include> element is intended as a base for specialization and for the following use cases:

e The transclusion of non-DITA XML within <foreign> element using parse="xml1"
» The transclusion of preformatted textual content within <pre> element using parse="text"
e The transclusion of plain-text prose within DITA elements using parse="text"

In addition, processors can support additional values for the @parse attribute.

For example, the <include> element can be specialized to an element such as <coderef> as a way to
include preformatted sample programming code.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 226 of 471

The <include> element is not intended to reference DITA content. Use @conref or @conkeyref to
reuse DITA content.

Processing expectations

The <include> element instructs processors to insert the contents of the referenced resource at the
location of the <include> element. If the content is unavailable to the processor or cannot be processed
using the specified @parse value, the contents of the <fallback> element, if any, are presented
instead.

071 (392) | Processors SHOULD support the @parse (375) values "text" and "xml". |
072 (392) Processors SHOULD detect the encoding of the referenced document based on
the rules described for the @encoding (371) attribute.

Attributes

The following attributes are available on this element: inclusion attributes (368), link-relationship
attributes (368), universal attributes (362), and @keyref (373).

Examples

For the most part, <include> is intended to be used as a base for specialization. The following
examples use it directly for purposes of illustration.

Figure 98: Inclusion of XML markup other than SVG or MathML
In the following code sample, the <include> element references a tag library descriptor file:

<fig>
<title>JSP tag library elements and attributes</title>
<foreign outputclass="tld">
<include href="../src/main/webapp/WEB-INF/jsp-tag-library.tld"
parse="xml" format="tld"/>
</foreign>
</fig>

Figure 99: Inclusion of README text into a DITA topic, with fallback

In the following code sample, a README text file is referenced in order to reuse a list of changes to a set
of source code:

<topic id="readme">
<title>Summary of changes</title>
<shortdesc>This topic describes changes in the project source code.</shortdesc>
<body>
<section>
<include href="../src/README. txt" parse="text" encoding="UTF-8">
<fallback>See README.txt in the source package for a list of changes.</fallback>
</include>
</section>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 227 of 471

</body>
</topic>

Figure 100: Inclusion of preformatted text
In the following code sample, the <include> element references a JSON file:

<pre>
<include href="../src/config.json" format="json" parse="text" encoding="UTF-8"/>
</pre>

Figure 101: Proprietary vendor handling for CSV tables

In the following code sample, the <include> element specifies a proprietary @parse value that instructs
a processor how to render a comma-separated data set within the figure:

<fig>
<title>Data Table</title>
<include href="data.csv" encoding="UTF-8"
parse="http://www.example.com/dita/includeParsers/csv-to-simpletable"/>
</fig>

9.3.2.20 <keyword>
A keyword is text or a token that has a unique value, such as a product name or unit of reusable text.

Processing expectations

When used within the <keywords> element, the content of a <keyword> element is considered to be
metadata and should be processed as appropriate for the given output medium.

Elements that are specialized from the <keyword> element might have extended processing, such as
specific formatting or automatic indexing.

Attributes

The following attributes are available on this element: universal attributes (362) and @keyref (373).

Examples
This section contains examples of how the <keyword> element can be used.

Figure 102: <keyword> element used to store a product hame

In the following code sample, the <keyword> element holds a product name that can be referenced
using content reference (conref) or content key reference (conkeyref):

<keyword id="acme-bird-feeder">ACME Bird Feeder</keyword>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 228 of 471

To enable referencing variable text using @keyref, store the product name in a <keytext> element.

Figure 103: <keyword> element referencing a product name

In the following example, the <keyword> element references a product name using @conkeyref:
<p>To fill the <keyword conkeyref="productnames/acme-bird-feeder"/>, unscrew the top ...</p>

Figure 104: <keyword> element as metadata

In the following code sample, "Big data" is specified as metadata that applies to the topic:

<prolog>
<metadata>
<keywords>
<keyword>Big data</keyword>
</keywords>
</metadata>
</prolog>

9.3.2.21
A list item is an item in either an ordered or unordered list.

Attributes

The following attributes are available on this element: universal attributes (362).

Example
See <o1> (235) or (242).

9.3.2.22 <lines>

Lines are lines of text where white space is significant. The <1ines> element can be used to represent
dialogs, poetry, or other text fragments where line breaks are significant.

Rendering expectations

073 (392) Processors SHOULD preserve the line breaks and spaces that are present in the
content of a <1ines> element.

The contents of the <1ines> element is typically rendered in a non-monospaced font.

Attributes

The following attributes are available on this element: display attributes (368), universal attributes (362),
and @xml:space (379).

Example

In the following code sample, a <1ines> element contains the text of [Buffalo Bill 's], a poem by e. e.
cummings:

<lines>Buffalo Bill ’s
defunct
who used to
ride a watersmooth-silver
stallion
and break onetwothreefourfive pigeonsjustlikethat

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 229 of 471

Jesus
he was a handsome man
and what i want to know is

how do you like your blue-eyed boy
Mister Death</lines>

9.3.2.23 <longdescref>

A long description reference is a reference to a textual description of a graphic or object. This is typically
used to provide an extended description when the graphic or object is too complicated to describe with
alternate text.

Attributes

The following attributes are available on this element: link-relationship attributes (368), universal
attributes (362), and @keyref (373).

Examples
This section contains examples of how the <1ongdescref> element can be used.

Figure 105: <longdescref> which references a local DITA description

In the following code sample, the <longdescref> references a detailed image description that is stored
in a DITA topic:

<image href="llama.jpg">

<alt>Llama picture</alt>

<longdescref href="my-pet-llama.dita"/>
</image>

Figure 106: <longdescref> which references an external description
In this code sample, the long description is stored remotely, on a external Web site:

<image href="puffin.jpg">
<alt>Puffin pigure</alt>
<longdescref href="http://www.example.org/birds/puffin.html"
scope="external"
format="html"/>
</image>

9.3.2.24 <Ig>

A long quotation is a quotation that contains one or more paragraphs. The title and source of the
document that is being quoted can be specified.

Rendering expectations

The contents of the <1g> element is typically rendered as an indented block.

Attributes

The following attributes are available on this element: universal attributes (362) and @keyref (373).

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 230 of 471

Example

The following code sample contains a quotation. The <cite> attribute specifies the title of the document
that is quoted.

<p>This is the first line of the address that Abraham Lincoln delivered

on November 19, 1863 for the dedication of the cemetery at Gettysburg, Pennsylvania.</p>
<lg>Four score and seven years ago our fathers brought forth on this continent

a new nation, conceived in liberty, and dedicated to the proposition that all men

are created equal. <cite>Gettysburg address</cite>

</lq>

9.3.2.25 <note>
A note is information that expands on or calls attention to a particular point.

Usage information

The nature of a note (for example, caution, danger, or warning) is indicated through the values selected
for the @type attribute.

The values "danger", "notice", and "warning" have meanings that are based on ANSI Z535 and ISO 3864
regulations.

If @type is set to "other", the value of the Rothertype attribute can be used as a label for the note.
Many processors will require additional information on how to process the value.

Rendering expectations

074 (392) Processors SHOULD render a label for notes. The content of the label depends on
the values of the @type attribute.

A note is typically rendered in a way that stands out from the surrounding content.

Attributes

The following attributes are available on this element: universal attributes (362) and the attributes defined
below.

@othertype
Specifies an alternate note type. This value is used as the user-provided note label when the @type
attribute value is set to "other".

@type
Specifies the type of a note. This differs from the @type attribute on many other DITA elements. The
following are the allowable values:

« attention"
e "caution"

e "danger"

¢ "important”
¢ "note"

« "notice"

« ‘“other"

¢ "remember"
* restriction"
° lltipll

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 231 of 471

e "trouble"
e "warning"
e "-dita-use-conref-target”

Example
The following code sample shows a <note> with @type set to "tip":

<note type="tip">Thinking of a seashore, green meadow, or cool
mountain overlook can help you to relax and be more
patient.</note>

9.3.2.26 <object>

The DITA <object> element corresponds to the HTML <object> element, and the attribute semantics
derive from the HTML definitions. Because of this, the @t ype attribute on <object> differs from the
@type attribute on many other DITA elements.

Usage information

The <object> element enables authors to include animated images, applets, plug-ins, video clips, and
other multimedia objects in a topic.

Rendering expectations

075 (392) Processors SHOULD scale the object when values are provided for the @height
and @width attributes. The following expectations apply:

« If a height value is specified and no width value is specified, processors
SHOULD scale the width by the same factor as the height.

« If a width value is specified and no height value is specified, processors
SHOULD scale the height by the same factor as the width.

« If both a height value and width value are specified, implementations MAY
ignore one of the two values when they are unable to scale to each
direction using different factors.

076 (392) When an object cannot be rendered in a meaningful way, processors SHOULD
present the contents of the <fallback> element, if it is present.

Attributes

The following attributes are available on this element: universal attributes (362) and the attributes defined
below.

@data
Contains a reference to the location of an object's data. If this attribute is a relative URL, it is
specified relative to the document containing the <object> element. If this attribute is set, the
@type attribute should also be set.

@datakeyref
Provides a key reference to the object. When specified and the key is resolvable, the key-provided
URI is used. A key that has no associated resource, only link text, is considered to be unresolved. If
@data is specified, it is used as a fallback when the key cannot be resolved to a resource.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 232 of 471

@height
Specifies the vertical dimension for the resulting display. The value of this attribute is a real number
expressed in decimal notation, optionally followed by a unit of measure. The following units of
measurement are supported: cm, em, in, mm, pc, pt, and px (centimeters, ems, inches, millimeters,
picas, points, and pixels, respectively). The default unit is px (pixels). Possible values include:"5",
"5in", and "10.5cm".

@name
Defines a unique name for the object.

@tabindex
Specifies the position of the object in tabbing order.

@type
Indicates the content type (MIME type) for the data specified by the @data or @datakeyref
attribute. This attribute should be set when the @data attribute is set to avoid loading unsupported
content types. Note that