
Darwin Information Typing Architecture
(DITA) Version 2.0
Working Draft 38

26 August 2024
This stage:
https://docs.oasis-open.org/dita/dita/v2.0/wd01/dita-v2.0-wd01.html (Authoritative version)
https://docs.oasis-open.org/dita/dita/v2.0/wd01/dita-v2.0-wd01.pdf

Previous stage:
N/A

Latest stage:
https://docs.oasis-open.org/dita/dita/v2.0/dita-v2.0.html (Authoritative version)
https://docs.oasis-open.org/dita/dita/v2.0/dita-v2.0.pdf

Technical Committee:
OASIS Darwin Information Typing Architecture (DITA) TC

Chair:
Kristen James Eberlein (kris@eberleinconsulting.com), Eberlein Consulting LLC

Editors:
Kristen James Eberlein (kris@eberleinconsulting.com), Eberlein Consulting LLC
Robert D. Anderson (robert.dan.anderson@oracle.com), Oracle

Additional artifacts:
This prose specification is one component of a work product that also includes:

• https://docs.oasis-open.org/dita/dita/v2.0/wd01/dita-v2.0-wd01-dita.zip (DITA source)
• https://docs.oasis-open.org/dita/dita/v2.0/wd01/dita-v2.0-wd01-grammars.zip (grammar files)

Related work:
This specification replaces or supersedes Darwin Information Typing Architecture (DITA) Version 1.3, a
multi-part OASIS that includes:

• Darwin Information Typing Architecture (DITA) Version 1.3 Part 0: Overview. Latest version: https://
docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part0-overview.html

• Darwin Information Typing Architecture (DITA) Version 1.3 Part 1: Base Edition. Latest version: https://
docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part1-base.html

• Darwin Information Typing Architecture (DITA) Version 1.3 Part 2: Technical Content Edition. Latest
version: https://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part2-tech-content.html

• Darwin Information Typing Architecture (DITA) Version 1.3 Part 3: All-Inclusive Edition. Latest version:
https://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part3-all-inclusive.html

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 1 of 471

https://docs.oasis-open.org/dita/dita/v2.0/wd01/dita-v2.0-wd01.html
https://docs.oasis-open.org/dita/dita/v2.0/wd01/dita-v2.0-wd01.pdf
https://docs.oasis-open.org/dita/dita/v2.0/dita-v2.0.html
https://docs.oasis-open.org/dita/dita/v2.0/dita-v2.0.pdf
https://www.oasis-open.org/committees/dita/
mailto:kris@eberleinconsulting.com
http://eberleinconsulting.com/
mailto:kris@eberleinconsulting.com
http://eberleinconsulting.com/
mailto:robert.dan.anderson@oracle.com
http://www.oracle.com
https://docs.oasis-open.org/dita/dita/v2.0/wd01/dita-v2.0-wd01-dita.zip
https://docs.oasis-open.org/dita/dita/v2.0/wd01/dita-v2.0-wd01-grammars.zip
https://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part0-overview.html
https://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part0-overview.html
https://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part1-base.html
https://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part1-base.html
https://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part2-tech-content.html
https://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part3-all-inclusive.html

Abstract:
The Darwin Information Typing Architecture (DITA) 2.0 specification defines both a) a set of document
types for authoring and organizing topic-oriented information; and b) a set of mechanisms for combining,
extending, and constraining document types.

Status:
This document was last revised or approved by the OASIS Darwin Information Typing Architecture (DITA)
TC on the above date. The level of approval is also listed above. Check the “Latest stage” location noted
above for possible later revisions of this document. Any other numbered Versions and other technical
work produced by the Technical Committee (TC) are listed at https://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=dita#technical.

TC members should send comments on this specification to the TC’s email list. Others should send
comments to the TC’s public comment list, after subscribing to it by following the instructions at the “Send
A Comment” button on the TC’s web page at https://www.oasis-open.org/committees/comments/
index.php?wg_abbrev=dita.

This specification is provided under the RF on Limited Terms Mode of the OASIS IPR Policy, the mode
chosen when the Technical Committee was established. For information on whether any patents have
been disclosed that may be essential to implementing this specification, and any offers of patent licensing
terms, please refer to the Intellectual Property Rights section of the TC's web page (https://www.oasis-
open.org/committees/dita/ipr.php).

Note that any machine-readable content (Computer Language Definitions) declared Normative for this
Work Product is provided in separate plain text files. In the event of a discrepancy between any such plain
text file and display content in the Work Product's prose narrative document(s), the content in the
separate plain text file prevails.

Citation format:
When referencing this specification, the following citation format should be used:

[DITA-v2.0]
Darwin Information Typing Architecture (DITA) Version 2.0. Edited by Kristen James Eberlein and Robert
D. Anderson. 26 August 2024. Working Draft 38. https://docs.oasis-open.org/dita/dita/v2.0/wd01/dita-v2.0-
wd01.html. Latest stage: https://docs.oasis-open.org/dita/dita/v2.0/dita-v2.0.html.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 2 of 471

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dita#technical
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dita#technical
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=dita
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=dita
https://www.oasis-open.org/policies-guidelines/ipr#RF-on-Limited-Mode
https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/committees/dita/ipr.php
https://www.oasis-open.org/committees/dita/ipr.php
https://www.oasis-open.org/policies-guidelines/tc-process-2017-05-26#wpComponentsCompLang
https://docs.oasis-open.org/dita/dita/v2.0/wd01/dita-v2.0-wd01.html
https://docs.oasis-open.org/dita/dita/v2.0/wd01/dita-v2.0-wd01.html
https://docs.oasis-open.org/dita/dita/v2.0/dita-v2.0.html

Notices
Copyright © OASIS Open 2022. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be
followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

As stated in the OASIS IPR Policy, the following three paragraphs in brackets apply to OASIS Standards
Final Deliverable documents (Committee Specification, OASIS Standards, or Approved Errata).

[OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Standards Final Deliverable, to notify OASIS
TC Administrator and provide an indication of its willingness to grant patent licenses to such patent claims
in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this
specification.]

[OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this OASIS Standards Final
Deliverable by a patent holder that is not willing to provide a license to such patent claims in a manner
consistent with the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS
may include such claims on its website, but disclaims any obligation to do so.]

[OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this OASIS
Standards Final Deliverable or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights. Information on
OASIS' procedures with respect to rights in any document or deliverable produced by an OASIS
Technical Committee can be found on the OASIS website. Copies of claims of rights made available for
publication and any assurances of licenses to be made available, or the result of an attempt made to
obtain a general license or permission for the use of such proprietary rights by implementers or users of
this OASIS Standards Final Deliverable, can be obtained from the OASIS TC Administrator. OASIS
makes no representation that any information or list of intellectual property rights will at any time be
complete, or that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 3 of 471

https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/

misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above
guidance.

https://www.oasis-open.org/policies-guidelines/trademark

Table of contents
1 Introduction.. 11

1.1 Terminology..11
1.2 References...11

1.2.1 Normative references.. 11
1.2.2 Informative references...12

1.3 Normative versions of DITA grammar files.. 14
1.4 Formatting conventions in the HTML5 version of the specification... 14

1.4.1 Link previews...14
1.4.2 Navigation links... 15

1.5 About the specification source...15
2 DITA terminology, notation, and conventions...17

2.1 Normative and non-normative information...17
2.2 Notation... 17
2.3 Basic DITA terminology... 17
2.4 Specialization terminology...19
2.5 DITA module terminology.. 19
2.6 Linking and addressing terminology.. 20
2.7 Key terminology...21
2.8 Map terminology.. 21
2.9 Other terminology.. 21
2.10 File extensions...22

3 Overview of DITA...23
3.1 Basic concepts...23
3.2 Producing different deliverables from a single source... 24
3.3 DITA topics.. 25

3.3.1 The topic as the basic unit of information..25
3.3.2 The benefits of a topic-based architecture.. 26
3.3.3 Disciplined, topic-oriented writing..26
3.3.4 Information typing..27
3.3.5 Topic structure... 28
3.3.6 Topic content... 29

3.4 DITA maps...30
3.4.1 Definition of DITA maps...30
3.4.2 Purpose of DITA maps.. 31
3.4.3 DITA map attributes...31

3.5 DITA metadata...34
3.5.1 Metadata elements..35
3.5.2 Metadata attributes..35
3.5.3 Metadata in maps and topics...36
3.5.4 Window metadata for user assistance...36

4 Accessibility and translation...37
4.1 Accessibility... 37

4.1.1 Handling accessibility in content and in processors.. 37
4.1.2 Accessible content...38
4.1.3 Accessible tables...38
4.1.4 Examples of DITA markup for accessibility... 40

4.2 Translation and localization... 47
4.2.1 The @xml:lang attribute.. 47

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 5 of 471

4.2.2 The @dir attribute..50
4.2.3 The @translate attribute..51

5 DITA map processing...52
5.1 DITA maps and their usage... 52

5.1.1 Imposing roles when referencing a map..53
5.1.2 Examples of DITA maps.. 57

5.2 Subject scheme maps and their usage..59
5.2.1 Subject scheme maps... 60
5.2.2 Defining controlled values for attributes.. 60
5.2.3 Binding controlled values to an attribute..61
5.2.4 Processing controlled attribute values...62
5.2.5 The @subjectrefs attribute.. 63
5.2.6 Examples of subject scheme maps...64

5.3 Metadata cascading...69
5.3.1 Cascading of metadata attributes in a DITA map.. 69
5.3.2 Reconciling topic and map metadata elements...71
5.3.3 Map-to-map cascading behaviors... 73
5.3.4 Examples of metadata cascading..74

5.4 Chunking..77
5.4.1 About the @chunk attribute...77
5.4.2 Processing chunk="combine"..78
5.4.3 Processing chunk="split"... 78
5.4.4 Using the @chunk attribute for other purposes...78
5.4.5 Examples of the @chunk attribute...78

6 DITA addressing.. 93
6.1 @id attribute.. 93
6.2 DITA linking..94

6.2.1 The @format attribute..94
6.2.2 The @href attribute..95
6.2.3 The @scope attribute.. 96
6.2.4 The @type attribute...97

6.3 URI-based (direct) addressing...98
6.4 Indirect key-based addressing...100

6.4.1 Core concepts for working with keys...100
6.4.2 Setting key names with the @keys attribute... 102
6.4.3 The @keyref attribute..103
6.4.4 Using keys for addressing... 103
6.4.5 Key scopes..104
6.4.6 The @keyscope attribute...105
6.4.7 Addressing keys across scopes.. 106
6.4.8 Cross-deliverable addressing and linking..108
6.4.9 Processing key references.. 110
6.4.10 Processing key references for navigation links and images.. 111
6.4.11 Processing key references on <topicref> elements... 111
6.4.12 Processing key references to generate text or link text... 112
6.4.13 Examples of keys...113
6.4.14 Examples of scoped keys..121

6.5 Context hooks for user assistance...130
7 DITA processing...131

7.1 Navigation..131
7.1.1 Table of contents... 131
7.1.2 Alternative titles... 131

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 6 of 471

7.2 Indexes.. 134
7.2.1 Index overview...134
7.2.2 Index elements.. 135
7.2.3 Location of <indexterm> elements.. 135
7.2.4 Index locators.. 136
7.2.5 Index redirection..136
7.2.6 Index ranges..136
7.2.7 Index sorting..137
7.2.8 Examples of indexing.. 138

7.3 Content reference (conref)...139
7.3.1 Conref overview...139
7.3.2 The @conaction attribute.. 140
7.3.3 The @conrefend attribute..144
7.3.4 The @conkeyref attribute.. 148
7.3.5 The @conref attribute..148
7.3.6 Using the "-dita-use-conref-target" value...149
7.3.7 Processing conrefs..150
7.3.8 Processing attributes when resolving conrefs... 151
7.3.9 Processing xrefs and conrefs within a conref..152

7.4 Conditional processing.. 154
7.4.1 About conditional processing...154
7.4.2 Expectations for conditional processing.. 156
7.4.3 About the DITAVAL document... 156
7.4.4 Conditional processing attribute values...157
7.4.5 Conditional processing attribute values with groups... 157
7.4.6 Conditional processing and subject schemes... 158
7.4.7 Filtering based on metadata attributes.. 158
7.4.8 Flagging based on metadata attributes... 159
7.4.9 Examples of conditional processing.. 160

7.5 Branch filtering...165
7.5.1 Overview of branch filtering...165
7.5.2 How filtering rules interact... 165
7.5.3 Branch filtering: Single referenced DITAVAL document for a branch.................................... 166
7.5.4 Branch filtering: Multiple referenced DITAVAL documents for a branch................................166
7.5.5 Branch filtering: Impact on resource and key names.. 167
7.5.6 Branch filtering: Implications of processing order..169
7.5.7 Examples of branch filtering.. 170

7.6 Sorting... 179
7.7 Determining effective attribute values..180

8 Configuration and specialization ...182
8.1 Overview of DITA extension facilities...182
8.2 Document-type configuration...182

8.2.1 Overview of document-type shells...182
8.2.2 Rules for document-type shells... 184
8.2.3 Equivalence of document-type shells..184
8.2.4 Conformance of document-type shells..185

8.3 Specialization...185
8.3.1 Overview of specialization...185
8.3.2 Modularization... 186
8.3.3 Vocabulary modules.. 187
8.3.4 Specialization rules for element types...187
8.3.5 Specialization rules for attributes...188

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 7 of 471

8.3.6 The @class attribute rules and syntax.. 188
8.3.7 The @specializations attribute rules and syntax... 190
8.3.8 Specializing to include non-DITA content.. 191
8.3.9 Sharing elements across specializations...192

8.4 Generalization..193
8.4.1 Overview of generalization.. 193
8.4.2 Element generalization..193
8.4.3 Processor expectations when generalizing elements..194
8.4.4 Attribute generalization..195
8.4.5 Generalization with cross-specialization dependencies.. 196

8.5 Constraints...196
8.5.1 Overview of constraints... 196
8.5.2 Constraint rules... 197
8.5.3 Constraints, processing, and interoperability...198

8.6 Expansion modules... 198
8.6.1 Overview of expansion modules..198
8.6.2 Expansion module rules.. 199

9 Element reference..201
9.1 DITA elements, A to Z..201
9.2 DITA attributes, A to Z... 204
9.3 Topic elements...206

9.3.1 Basic topic elements..206
9.3.2 Body elements...215
9.3.3 Multimedia elements..243
9.3.4 Indexing elements... 249
9.3.5 Related links elements.. 252
9.3.6 Table elements.. 255

9.4 Map elements.. 263
9.4.1 Basic map elements.. 263
9.4.2 Subject scheme elements... 276

9.5 Metadata elements.. 285
9.5.1 Descriptive metadata...285
9.5.2 Lifecycle management metadata...289
9.5.3 Product information metadata... 296

9.6 Specialization elements...298
9.6.1 <data>... 299
9.6.2 <foreign>... 300
9.6.3 <no-topic-nesting>...301

9.7 Domain elements...302
9.7.1 Alternative-titles domain elements...302
9.7.2 DITAVAL-reference domain element... 307
9.7.3 Emphasis domain elements.. 314
9.7.4 Hazard-statement domain elements..315
9.7.5 Highlighting domain elements... 321
9.7.6 Mapgroup domain elements..325
9.7.7 Utilities domain elements...330

9.8 Other elements.. 337
9.8.1 Legacy conversion elements...337
9.8.2 DITAVAL elements...338

9.9 Attributes..348
9.9.1 Attribute groups... 348
9.9.2 Universal attribute group... 362

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 8 of 471

9.9.3 Common attributes.. 367
10 Conformance... 381
A Acknowledgments... 383
B Aggregated RFC-2119 statements..384
C Coding practices for DITA grammar files...396

C.1 File naming conventions... 396
C.2 DTD coding requirements... 396

C.2.1 DTD: Use of entities..396
C.2.2 DTD: Coding requirements for document-type shells...397
C.2.3 DTD: Coding requirements for structural and element-domain modules..............................401
C.2.4 DTD: Coding requirements for structural modules..404
C.2.5 DTD: Coding requirements for element-domain modules...405
C.2.6 DTD: Coding requirements for attribute-domain modules.. 406
C.2.7 DTD: Coding requirements for element-configuration modules..406

C.3 RELAX NG coding requirements.. 408
C.3.1 RELAX NG: Overview of coding requirements... 408
C.3.2 RELAX NG: Coding requirements for document-type shells.. 409
C.3.3 RELAX NG: Coding requirements for structural and element-domain modules................... 411
C.3.4 RELAX NG: Coding requirements for structural modules...414
C.3.5 RELAX NG: Coding requirements for element-domain modules..416
C.3.6 RELAX NG: Coding requirements for attribute-domain modules..416
C.3.7 RELAX NG: Coding requirements for element-configuration modules.................................418

D Constraint modules... 420
D.1 Examples: Constraints implemented using DTDs...420

D.1.1 Example: Restrict the content model for the <topic> element using DTD............................ 420
D.1.2 Example: Constrain attributes for the <section> element using DTD................................... 421
D.1.3 Example: Constrain a domain module using DTD..423
D.1.4 Example: Replace a base element with the domain extensions using DTD.........................423
D.1.5 Example: Apply multiple constraints to a single document-type shell using DTD.................424

D.2 Examples: Constraints implemented using RNG..424
D.2.1 Example: Restrict the content model for the <topic> element using RNG............................424
D.2.2 Example: Constrain attributes for the <section> element using RNG...................................425
D.2.3 Example: Constrain a domain module using RNG... 426
D.2.4 Example: Replace a base element with the domain extensions using RNG........................ 427
D.2.5 Example: Apply multiple constraints to a single document-type shell using RNG................427

E Expansion modules... 430
E.1 Examples: Expansion implemented using DTDs.. 430

E.1.1 Example: Adding an element to the <section> element using DTDs....................................430
E.1.2 Example: Adding an attribute to certain table elements using DTDs....................................432
E.1.3 Example: Adding an existing domain attribute to certain elements using DTDs...................433
E.1.4 Example: Aggregating constraint and expansion modules using DTDs............................... 435

E.2 Examples: Expansion implemented using RNG..435
E.2.1 Example: Adding an element to the <section> element using RNG..................................... 435
E.2.2 Example: Adding an attribute to certain table elements using RNG..................................... 437
E.2.3 Example: Adding an existing domain attribute to certain elements using RNG....................439
E.2.4 Example: Aggregating constraint and expansion modules using RNG.................................440

F Element-by-element recommendations for translators..443
G Formatting expectations..452
H Migrating to DITA 2.0...453

H.1 Changes from DITA 1.3 to DITA 2.0..453
H.2 Information about migrating to DITA 2.0... 453

I OASIS grammar files.. 454

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 9 of 471

I.1 File names in the base DITA edition...454
I.2 Globally-unique identifiers in the base DITA edition... 455
I.3 Domains provided in the base DITA edition..456
I.4 Document-type shells provided in the base DITA edition... 457

J Processing interoperability considerations...458
K Revision history... 460

Index...463

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 10 of 471

1 Introduction
The Darwin Information Typing Architecture (DITA) specification defines a set of document types for
authoring and aggregating topic-oriented information, as well as a set of mechanisms for combining,
extending, and constraining document types.

1.1 Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT, "RECOMMEND", "MAY", and "OPTIONAL" in this document are to be interpreted as described in
[RFC-2119] (11) and [RFC8174] when, and only when, they appear in all capitals, as shown here.

The DITA specification uses <keyword> elements with the @outputclass attribute set to "RFC-2119"
for these key words. In general, normative statements that use such key words pertain to what is needed
for interoperability.

These key words are rendered with bold formatting. The normative statements are indicated visually in
the rendered specification by blue lines at the left and right of the statement:

In addition, a hyperlink is rendered to the left of the statement that contains the normative term. The link is
to a generated appendix that groups all the normative statements that appear in the specification.

1.2 References
This section contains the normative and informative references that are used in this document.

While any hyperlinks included in this section were valid at the time of publication, OASIS cannot
guarantee their long-term validity.

1.2.1 Normative references
The following documents are referenced in such a way that some or all of their content constitutes
requirements of this document.

[RFC-2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI
10.17487/RFC2119, March 1997, <http://www.rfc-editor.org/info/rfc2119>.

[RFC 3986]
Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform Resource Identifier (URI): Generic Syntax",
STD 66, RFC 3986, DOI 10.17487/RFC3986, January 2005, <http://www.rfc-editor.org/info/rfc3986>.

[RFC 5646]
Phillips, A., Ed., and M. Davis, Ed., "Tags for Identifying Languages", BCP 47, RFC 5646, DOI
10.17487/RFC5646, September 2009, <http://www.rfc-editor.org/info/rfc5646>.

[RFC8174]
Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI
10.17487/RFC8174, May 2017, <http://www.rfc-editor.org/info/rfc8174>.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 11 of 471

http://www.rfc-editor.org/info/rfc2119
http://www.rfc-editor.org/info/rfc3986
http://www.rfc-editor.org/info/rfc5646
http://www.rfc-editor.org/info/rfc8174

[XML 1.0]
Extensible Markup Language (XML) 1.0 (Fifth Edition), T Bray, J. Paoli, M. E. Maler, F. Yergeau,
Editors, W3C Recommendation, 26 November 2008, http://www.w3.org/TR/2008/REC-
xml-20081126/. Latest version available at http://www.w3.org/TR/xml.

[XML 1.1]
Extensible Markup Language (XML) 1.1 (Second Edition), T. Bray, J. Paoli, M. E. Maler, F. Yergeau,
J. Cowan, Editors, W3C Recommendation, 16 August 2006, http://www.w3.org/TR/2006/REC-
xml11-20060816/. Latest version available at http://www.w3.org/TR/xml11/.

1.2.2 Informative references
The following referenced documents are not required for the application of this document but might assist
the reader with regard to a particular subject area.

[ANSI Z535.6]
Product Safety Information in Product Manuals, Instructions And Other Collateral Materials, https://
webstore.ansi.org/Standards/NEMA/ansiz5352011r2017-1668876.

[HTML5]
HTML 5, Living Standard, https://html.spec.whatwg.org/.

[ISO 8601]
ISO/TC 154, Data elements and interchange formats—Information interchange—Representation of
dates and times, 3rd edition, http://www.iso.org/iso/catalogue_detail?csnumber=40874, 12 December
2004.

[ISO/IEC 19757-3]
ISO/IEC JTC 1/SC 34 Document description and processing languages, Information technology—
Document Schema Definition Languages (DSDL)—Part 3: Rule-based validation—Schematron,
http://www.iso.org/iso/catalogue_detail.htm?csnumber=40833, 1 June 2006.

[Namespaces in XML 1.0]
Namespaces in XML 1.0 (Third Edition), T. Bray, D. Hollander, A. Layman, R. Tobin, H. S. Thompson,
Editors, W3C Recommendation, 8 December 2009, http://www.w3.org/TR/2009/REC-xml-
names-20091208/. Latest version available at http://www.w3.org/TR/xml-names.

[Namespaces in XML 1.1]
Namespaces in XML 1.1 (Second Edition), T. Bray, D. Hollander, A. Layman, R. Tobin, Editors, W3C
Recommendation, 16 August 2006, http://www.w3.org/TR/2006/REC-xml-names11-20060816/.
Latest version available at http://www.w3.org/TR/xml-names11/.

[OASIS Table Model]
XML Exchange Table Model Document Type Definition. Edited by Norman Walsh, 1999. Technical
Memorandum TR 9901:1999. https://www.oasis-open.org/specs/tm9901.htm.

[RELAX NG]
J. Clark and M. Murata, editors, RELAX NG Specification, http://www.oasis-open.org/committees/
relax-ng/spec-20011203.html, OASIS Committee Specification, 3 December 2001.

[RELAX NG Compact Syntax]
J. Clark, editor, RELAX NG Compact Syntax, http://www.oasis-open.org/committees/relax-ng/
compact-20021121.html, OASIS Committee Specification, 21 November 2002.

[RELAX NG DTD Compatibility]
J. Clark and M. Murata, editors, RELAX NG DTD Compatibility, http://www.oasis-open.org/
committees/relax-ng/compatibility-20011203.html, OASIS Committee Specification, 3 December
2001.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 12 of 471

http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/xml
http://www.w3.org/TR/2006/REC-xml11-20060816/
http://www.w3.org/TR/xml11/
https://webstore.ansi.org/Standards/NEMA/ansiz5352011r2017-1668876
https://html.spec.whatwg.org/
http://www.iso.org/iso/catalogue_detail?csnumber=40874
http://www.iso.org/iso/catalogue_detail.htm?csnumber=40833
http://www.w3.org/TR/2009/REC-xml-names-20091208/
http://www.w3.org/TR/xml-names
http://www.w3.org/TR/2006/REC-xml-names11-20060816/
http://www.w3.org/TR/xml-names11/
https://www.oasis-open.org/specs/tm9901.htm
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html
http://www.oasis-open.org/committees/relax-ng/compact-20021121.html
http://www.oasis-open.org/committees/relax-ng/compact-20021121.html
http://www.oasis-open.org/committees/relax-ng/compatibility-20011203.html
http://www.oasis-open.org/committees/relax-ng/compatibility-20011203.html

[SVG 1.1]
Scalable Vector Graphics (SVG) Version 1.1 (Second) Edition), E. Dahlstrom, P. Dengler, A. Grasso,
C. Lilley, C. McCormack, D. Schepers, J. Watt, Editors, W3C Recommendation, 16 August 2011,
https://www.w3.org/TR/SVG11/.

[Unicode BiDi]
Unicode Bidirectional Algorithm, M. Davis, A. Lanin, A. Glass, Editors, Unicode Technical Report, 27
August 2021, https://www.unicode.org/reports/tr9/.

[WCAG 2.1]
Web Content Accessibility Guidelines (WCAG) Version 2.1, A. Kirkpatrick, J. O Connor, A. Campbell,
M. Cooper, Editors, W3C Recommendation, 05 June 2018, https://www.w3.org/TR/WCAG21/.

[XHTML 1.0]
XHTML™ 1.0 The Extensible HyperText Markup Language (Second Edition), S. Pemberton, Editor,
W3C Recommendation, 1 August 2002, http://www.w3.org/TR/2002/REC-xhtml1-20020801. Latest
version available at http://www.w3.org/TR/xhtml1.

[XHTML 1.1]
XHTML™ 1.1 – Module-based XHTML – Second Edition, S. McCarron, M. Ishikawa, Editors, W3C
Recommendation, 23 November 2010, http://www.w3.org/TR/2010/REC-xhtml11-20101123. Latest
version available at http://www.w3.org/TR/xhtml11/.

[XPointer 1.0]
XML Pointer Language (XPointer), S. J. DeRose, R. Daniel, P. Grosso, E. Maler, J. Marsh, N. Walsh,
Editors, W3C Working Draft (work in progress), 16 August 2002, http://www.w3.org/TR/2002/WD-
xptr-20020816/. Latest version available at http://www.w3.org/TR/xptr/.

[XML Catalogs 1.1]
OASIS Standard, XML Catalogs Version 1.1, 7 October 2005, https://www.oasis-open.org/
committees/download.php/14809/xml-catalogs.html.

[xml:tm 1.0]
A. Zydroń, R. Raya, and B. Bogacki, editors, XML Text Memory (xml:tm) 1.0 Specification, http://
www.gala-global.org/oscarStandards/xml-tm/, The Localization Industry Standards Association
(LISA) xml:tm 1.0, 26 February 2007.

[XSL 1.0]
Extensible Stylesheet Language (XSL) Version 1.0, S. Adler, A. Berglund, J. S. Deach, T. Graham, P.
Grosso, E. Gutentag, A. Milowski, S. Parnell, J. Richman, S. Zilles, Editors, W3C Recommendation,
15 October 2001, http://www.w3.org/TR/2001/REC-xsl-20011015/. Latest version available at http://
www.w3.org/TR/xsl/.

[XSL 1.1]
Extensible Stylesheet Language (XSL) Version 1.1, A. Berglund, Editor, W3C Recommendation, 5
December 2006, http://www.w3.org/TR/2006/REC-xsl11-20061205/. Latest version available at http://
www.w3.org/TR/xsl11/.

[XSLT 2.0]
XSL Transformations (XSLT) Version 2.0, M. Kay, Editor, W3C Recommendation, 23 January 2007,
http://www.w3.org/TR/2007/REC-xslt20-20070123/. Latest version available at http://www.w3.org/TR/
xslt20.

[XSLT 3.0]
XSL Transformations (XSLT) Version 3.0, M. Kay, Editor,W3C Recommendation, 8 June 2017,
https://www.w3.org/TR/xslt-30/.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 13 of 471

https://www.w3.org/TR/SVG11/
https://www.unicode.org/reports/tr9/
https://www.w3.org/TR/WCAG21/
http://www.w3.org/TR/2002/REC-xhtml1-20020801
http://www.w3.org/TR/xhtml1
http://www.w3.org/TR/xhtml1
http://www.w3.org/TR/2010/REC-xhtml11-20101123
http://www.w3.org/TR/xhtml11/
http://www.w3.org/TR/xhtml11/
http://www.w3.org/TR/2002/WD-xptr-20020816/
http://www.w3.org/TR/xptr/
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
http://www.ttt.org/oscarStandards/xml-tm/
http://www.ttt.org/oscarStandards/xml-tm/
http://www.w3.org/TR/2001/REC-xsl-20011015/
http://www.w3.org/TR/xsl/
http://www.w3.org/TR/2006/REC-xsl11-20061205/
http://www.w3.org/TR/xsl11/
http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.w3.org/TR/xslt20
https://www.w3.org/TR/xslt-30/

[XTM 1.0]
S. Pepper and G. Moore, editors, XML Topic Maps (XTM) 1.0, http://www.topicmaps.org/xtm/
index.html, TopicMaps.Org XTM 1.0, 2001.

1.3 Normative versions of DITA grammar files
DITA document types and vocabulary modules can be constructed using several XML-document
grammar mechanisms. The DITA specification provides coding requirements for DTDs and RNG, and it
also includes grammar files that are constructed using those mechanisms. The RNG grammar files are
normative.

The DITA Technical Committee chose the RELAX NG XML syntax for the following reasons:

Easy use of foreign markup

The DITA grammar files maintained by OASIS depend on this feature of RELAX NG in order to
capture metadata about document-type shells and modules.

The foreign vocabulary feature can be used to include metadata. The DITA 1.3 RNG-based grammar
files contained metadata that was used when DTD- and XSD-based grammar files were generated.

The foreign vocabulary feature can also be used to include Schematron rules directly in RELAX NG
grammars. Schematron rules can check for patterns that either are not expressible with RELAX NG
directly or that would be difficult to express.

RELAX NG <div> element
This general grouping element allows for arbitrary organization and grouping of patterns within
grammar documents. Such grouping tends to make the grammar documents easier to work with,
especially in XML-aware editors.

Capability of expressing precise restrictions
RELAX NG is capable of expressing constraints that are more precise than is possible with DTDs.
For example, RELAX NG patterns can be context specific such that the same element type can allow
different content or attributes in different contexts. However, the grammar files that are provided by
the OASIS DITA Technical Committee do not use any features of RELAX NG that cannot be
translated into equivalent DTD constructs.

The DITA use of RELAX NG depends on the RELAX NG DTD Compatibility specification, which provides
a mechanism for defining default-attribute values and embedded documentation. Processors that use
RELAX NG for DITA documents in which required attributes (for example, the @class attribute) are not
explicitly present must implement the DTD compatibility specification in order to get default attribute
values.

1.4 Formatting conventions in the HTML5 version of the specification
Given the size and complexity of the specification, it is not generated as a single HTML5 file. Instead,
each DITA topic is rendered as a separate HTML5 file.

The HTML5 version of the specification uses certain formatting conventions to aid readers in navigating
through the specification and locating material easily: Link previews and navigation links.

1.4.1 Link previews
The DITA specification uses the content of the DITA <shortdesc> element to provide link previews for
its readers. These link previews are visually highlighted by a colored background.

The link previews serve as enhanced navigation aids, enabling readers to more easily locate content.
This usability enhancement is one of the ways in which the specification illustrates the capabilities of DITA
and exemplifies DITA best practices.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 14 of 471

http://www.topicmaps.org/xtm/index.html
http://www.topicmaps.org/xtm/index.html

The following screen capture illustrates how link previews are displayed in the HTML5 version of the
specification:

Figure 1: Link previews

1.4.2 Navigation links
To ease readers in navigating from one topic to another, each HTML5 file generated by a DITA topic
contains navigation links at the bottom.

Parent topic
Takes readers to the parent topic, which is the topic referenced by the closest topic in the
containment hierarchy

Previous topic
Takes readers to the previous topic in the reading sequence

Next topic
Takes readers to the next topic in the reading sequence

Return to main page
Takes readers to the place in the table of contents for the current topic in the reading sequence

The following screen capture illustrates how navigation links are displayed in the HTML5 version of the
specification:

Figure 2: Navigation links

When readers hover over the navigation links, the short description of the DITA topic is also displayed.

1.5 About the specification source
The DITA specification is authored in DITA. It is a complex document that uses many DITA features,
including key references (keyrefs), content references (conrefs), and controlled values set in a subject
scheme map.

The source files for the DITA specification are managed in a GitHub repository that is maintained by
OASIS; they also can be downloaded from OASIS.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 15 of 471

The DITA Technical Committee used the following applications to work with the DITA source:

• Antenna House Formatter
• DITA Open Toolkit
• Congility Content Server
• Oxygen Content Fusion
• Oxygen XML Editor
• XMetaL Author Enterprise

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 16 of 471

2 DITA terminology, notation, and conventions
The DITA specification uses specific notation and terms to define the components of the DITA standard.

2.1 Normative and non-normative information
The DITA specification contains normative and non-normative information.

Normative information
Normative information is the formal portion of the specification that describes the rules and
requirements that make up the DITA standard and which must be followed.

Non-normative information
Non-normative information includes descriptions that provide background, examples, notes, and
other useful information that are not formal requirements or rules that must be followed.

All information in the specification is normative unless it is an example, a note, an appendix, or is explicitly
labeled as non-normative.

The DITA specification contains examples to help clarify or illustrate specific aspects of the specification.
Because examples are specific rather than general, they might not illustrate all aspects or be the only way
to accomplish or implement an aspect of the specification. Therefore all examples are non-normative.

2.2 Notation
Certain conventions are used throughout the specification to identify attributes and elements.

attribute types
Attribute names are preceded by @ to distinguish them from elements or surrounding text, for
example, the @props or the @class attribute.

element types
Element names are delimited with angle brackets (< and >) to distinguish them from surrounding text,
for example, the <keyword> or the <prolog> element.

In general, the unqualified use of the term map or topic can be interpreted to mean "a <map> element and
any specialization of a <map> element " or "a <topic> element or any specialization of a <topic>
element." Similarly, the unqualified use of an element type name (for example, <p>) can be interpreted to
mean the element type or any specialization of the element type.

2.3 Basic DITA terminology
Certain terminology is used for basic DITA components.

Comment by rodaande on 13 December 2022
Somewhere - likely in this topic - we need a definition of "DITA Processor". Currently as used in the
spec, that would encompass any tool that processes DITA in any way – not just rendering tools that
use DITA as source, but any tools that work with DITA. For example, an editor is not required to
evaluate any DITA feature (such as a simple text editor). However a DITA editor that resolves content
references or keys inline is a DITA processor, which is processing those features based on processor
requirements in the spec. Similarly a CCMS that evaluates content references falls under the umbrella
of a DITA processor.

This assumes that we retain current use of "DITA processor" as used in the specification. Jarno noted
that HTML5 uses producer/ consumer, where producer is aimed more at rules for authors / creators of
DITA content and consumer is a tool that acts upon the content.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 17 of 471

Disposition: Unassigned

DITA document

An XML document that conforms to the requirements of this specification.

001
(384)

A DITA document MUST have as its root element one of the following
elements:

• <map> or a specialization of the <map> element
• <topic> or a specialization of the <topic> element
• <dita>, which cannot be specialized, but which allows documents

with multiple sibling topics

Comment by robander on 26 may 2021
picky comment: a <dita> root element (singular) only allows ONE
document with sibling topics. Also, not to over-complicate, but an
ordinary topic also allows sibling topics (as children), so what
really distinguishes this is that it allows "root" siblings, but I don't
think we have a word for that.
Disposition: Unassigned

DITA document type
A unique set of structural modules, domain modules, and constraint modules that taken together
provide the XML element and attribute declarations that define the structure of DITA documents.

DITA document-type shell
A set of DTD or RELAX NG declarations that implement a DITA document type by using the rules
and design patterns that are included in the DITA specification. A DITA document-type shell includes
and configures one or more structural modules, zero or more domain modules, and zero or more
constraint modules. With the exception of the optional declarations for the <dita> element and its
attributes, DITA document-type shells do not declare any element or attribute types directly.

DITA element
An XML element instance whose type is a DITA element type. DITA elements must exhibit a @class
attribute that has a value that conforms to the rules for specialization hierarchy specifications.

Comment by Kristen J Eberlein on 02 July 2019

Suggest removing the last sentence of the definition. It uses the word 'must'; also, it needs to be
better aligned with the topic about architectural attributes.

Disposition: Unassigned

Comment by robander on 26 may 2021
Having @class is such a core part of being a DITA element that I'd be inclined to keep it, except
that 1) we could just remove "must" (it's a statement of fact, not a rule) and 2) I am continually
confused by the term "exhibit" in this context. Also, <dita> doesn't have class and is a DITA
element, so it's an oddball.
Disposition: Unassigned

DITA element type
An element type that is either one of the base element types that are defined by the DITA
specification, or a specialization of one of the base element types.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 18 of 471

map instance
An occurrence of a map type in a DITA document.

map type
A map or a specialization of map that defines a set of relationships among topic instances.

structural type instance
An occurrence of a topic type or a map type in a DITA document.

topic instance
An occurrence of a topic type in a DITA document.

topic type
A topic or a specialization of topic that defines a complete unit of content.

2.4 Specialization terminology
Certain terminology is used to discuss DITA specialization.

base type
An element or attribute type that is not a specialization. All base types are defined by the DITA
specification.

extension element
Within a vocabulary module, an element type that can be extended, replaced, or constrained for use
in a DITA document type.

generalization
The process by which a specialized element is transformed into a less-specialized ancestor element
or a specialized attribute is transformed into a less-specialized ancestor attribute. The original
specialization-hierarchy information can be preserved in the generalized instance; this allows the
original specialized type to be recreated from the generalized instance.

specialization
(1) The act of defining new element or attribute types as a semantic refinement of existing element or
attribute types
(2) An element or attribute type that is a specialization of a base type
(3) A process by which a generalized element is transformed into one of its more specialized element
types or a generalized attribute is transformed into a more specialized attribute.

specialization hierarchy
The sequence of element or attribute types, from the most general to most specialized, from which a
given element or attribute type is specialized. The specialization hierarchy for a DITA element is
formally declared through its @class attribute.

structural type
A topic type or map type.

2.5 DITA module terminology
Certain terminology is used to discuss DITA modules.

attribute domain module
A domain module that defines a specialization of either the @base or @props attribute.

constraint module
A set of declarations that imposes additional constraints onto the element or attribute types that are
defined in a specific vocabulary module.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 19 of 471

domain module
A vocabulary module that defines a set of element types or an attribute type that supports a specific
subject or functional area.

element domain module
A domain module that defines one or more element types for use within maps or topics.

structural module
A vocabulary module that defines a top-level map type or topic type.

vocabulary module
A set of element or attribute declarations.

2.6 Linking and addressing terminology
Certain terminology is used for discussing linking and addressing.

referenced element
An element that is referenced by another DITA element. See also referencing element.
Example

Consider the following code sample from a installation-reuse.dita topic. The <step>
element that it contains is a referenced element; other DITA topics reference the <step> element by
using the @conref attribute.

<step id="run-startcmd-script">
 <cmd>Run the startcmd script that is applicable to your operating-system
environment.</cmd>
</step>

referencing element
An element that references another DITA element by specifying an addressing attribute. See also
referenced element and addressing attribute
Example

The following <step> element is a referencing element. It uses the @conref attribute to reference a
<step> element in the installation-reuse.dita topic.

<step conref="installation-reuse.dita#reuse/run-startcmd-script">
 <cmd/>
</step>

addressing attribute
An attribute, such as @conref, @conkeyref, @keyref, and @href, that specifies an address.

Comment by robander on 26 may 2021
Nit-picking: conkeyref / keyref do not specify an address, they specify a key that can indirectly
result in an address. Maybe rephrase something like this, but not sure where to put the "such as"
here:

An attribute that specifies an address or a that specifies key that resolves to an address.

or maybe

An attribute that specifies an address or that specifies a key.

Disposition: Unassigned

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 20 of 471

2.7 Key terminology
Certain terminology is used to discuss keys.

resource
For the purposes of keys and key resolution, one of the following:

• An object addressed by URI
• Metadata specified on a resource, such as a @scope or @format attribute
• Text or metadata located within a <topicmeta> element

key
A name for a resource. See 6.4.4 Using keys for addressing (103) for more information.

key definition
A <topicref> element that binds one or more key names to zero or more resources.

key reference
An attribute that references a key, such as @keyref or @conkeyref.

key space
A list of key definitions that are used to resolve key references.

effective key definition
The definition for a key within a key space that is used to resolve references to that key. A key might
have multiple definitions within a key space, but only one of those definitions is effective.

key scope
A map or section of a map that defines its own key space and serves as the resolution context for its
key references.

2.8 Map terminology
Certain terminology is used for DITA maps.

root map
The DITA map that is provided as input for a processor.

submap
A DITA map that is referenced with a @scope attribute that evaluates as "local". The value of the
scope attribute might be explicitly set, be defaulted, or cascade from another element.

peer map
A DITA map that is referenced with a @scope attribute that evaluates as "peer". The value of the
scope attribute might be explicitly set, be defaulted, or cascade from another element.

map branch
A <topicref> element or a specialization of <topicref>, along with any child elements and all
resources that are referenced by the original element or its children.

2.9 Other terminology
convenience elements

Specialized element types that are equivalent to base element types with certain attributes
configured.

user agent
Software that retrieves and presents web content for end users or is implemented using Web
technologies. User agents include web browsers, media players, and plug-ins, as well as operating
system shells and web-enabled consumer electronics.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 21 of 471

2.10 File extensions
DITA uses certain file extensions for topics, maps, and conditional processing profiles.

002 (384) Files that contain DITA content SHOULD use the following file extensions:

DITA topics
*.dita (preferred)
*.xml

DITA maps
*.ditamap

Conditional processing profiles
*.ditaval

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 22 of 471

3 Overview of DITA
The Darwin Information Typing Architecture (DITA) is an XML-based architecture for authoring, producing,
and delivering topic-oriented, information-typed content that can be reused and single-sourced in a
variety of ways. While DITA historically has been driven by the requirements of large-scale technical
documentation authoring, management, and delivery, it is a standard that is applicable to any kind of
publication or information that might be presented to readers, including interactive training and
educational materials, standards, reports, business documents, trade books, travel and nature guides,
and more.

DITA is designed for creating new document types and describing new information domains based on
existing types and domains. The process for creating new types and domains is called specialization.
Specialization enables the creation of specific, targeted XML grammars that can still use tools and design
rules that were developed for more general types and domains; this is similar to how classes in an object-
oriented system can inherit the methods of ancestor classes.

Because DITA topics are conforming XML documents, they can be readily viewed, edited, and validated
using standard XML tools, although realizing the full potential of DITA requires using DITA-aware tools.

Comment by Kristen J Eberlein on 03 June 2019

This section of the spec now contains material about topics, maps, and metadata that was previously
in the "DITA markup" section."

We need to carefully consider what of this content is appropriate. Some of it – information about map
elements and attributes, metadata – is duplicated elsewhere. If we think it is useful to have a high-level
overview here, we should mark it as non-normative – and point users to the normative coverage of the
topic.

In a parallel move, I think we'll need to move coverage of critical DITA attributes into a more prominent
place in the spec.

Disposition: Unassigned

3.1 Basic concepts
DITA has been designed to satisfy requirements for information typing, semantic markup, modularity,
reuse, interchange, and production of different deliverable forms from a single source. These topics
provide an overview of the key DITA features and facilities that serve to satisfy these requirements.

DITA topics
In DITA, a topic is the basic unit of authoring and reuse. All DITA topics have the same basic
structure: a title and, optionally, a body of content. Topics can be generic or more specialized;
specialized topics represent more specific information types or semantic roles, for example,
<concept>, <task>, or <reference> See DITA topics (25) for more information.

DITA maps
DITA maps are documents that organize topics and other resources into structured collections of
information. DITA maps specify hierarchy and the relationships among the topics; they also provide
the contexts in which keys are defined and resolved. See DITA maps (30) for more information.

Information typing
Information typing is the practice of identifying types of topics, such as concept, reference, and task,
to clearly distinguish between different types of information. Topics that answer different reader
questions (How do I? What is?) can be categorized with different information types. The base

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 23 of 471

information types provided by DITA specializations (for example, technical content, machine industry,
and learning and training) provide starter sets of information types that can be adopted immediately
by many technical and business-related organizations. See Information typing (27) for more
information.

DITA addressing
DITA provides two addressing mechanisms. DITA addresses either are direct URI-based addresses,
or they are indirect key-based addresses. Within DITA documents, individual elements are addressed
by unique identifiers specified on the @id attribute. DITA defines two fragment-identifier syntaxes;
one is the full fragment-identifier syntax, and the other is an abbreviated fragment-identifier syntax
that can be used when addressing non-topic elements from within the same topic. See DITA
addressing (93) for more information.

Content reuse
The DITA @conref, @conkeyref, @conrefend, and @conaction attributes provide mechanisms
for reusing content within DITA topics or maps. These mechanisms can be used both to pull and
push content. See Content reuse (139) for more information

Conditional processing
Conditional processing is the filtering or flagging of information based on processing-time criteria.
See Conditional processing (154) for more information.

Configuration
A document-type shell is an XML grammar file that specifies the elements and attributes that are
allowed in a DITA document. The document-type shell integrates structural modules, domain
modules, and element-configuration modules. In addition, a document-type shell specifies whether
and how topics can nest. See 8.2 Document-type configuration (182) for more information.

Specialization
The specialization feature of DITA allows for the creation of new element types and attributes that are
explicitly and formally derived from existing types. This facilitates interchange of conforming DITA
content and ensures a minimum level of common processing for all DITA content. It also allows
specialization-aware processors to add specialization-specific processing to existing base
processing. See Specialization (185) for more information.

Constraints
Constraint modules restrict content models or attribute lists for specific element types, remove certain
extension elements from an integrated domain module, or replace base element types with domain-
provided, extension element types. See Constraints (196) for more information.

3.2 Producing different deliverables from a single source
DITA is designed to enable the production of multiple deliverable formats from a single set of DITA
content. This means that many rendition details are specified neither in the DITA specification nor in the
DITA content; the rendition details are defined and controlled by the processors.

Like many XML-based applications for human-readable documentation, DITA supports the separation of
content from presentation. This is necessary when content is used in different contexts, since authors
cannot predict how or where the material that they author will be used. The following features and
mechanisms enable users to produce different deliverable formats from a single source:
DITA maps

Different DITA maps can be optimized for different delivery formats. For example, you might have a
book map for printed output and another DITA map to generate online help; each map uses the same
content set.

Specialization
The DITA specialization facility enables users to create XML elements that can provide appropriate
rendition distinctions. Because the use of specializations does not impede interchange or

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 24 of 471

interoperability, DITA users can safely create the specializations that are demanded by their local
delivery and rendition requirements, with a minimum of additional impact on the systems and
business processes that depend on or use the content. While general XML practices suggest that
element types should be semantic, specialization can be used to define element types that are purely
presentational in nature. The highlighting domain is an example of such a specialization.

Conditional processing
Conditional processing makes it possible to have a DITA topic or map that contains delivery-specific
content.

Content referencing
The conref mechanism makes it possible to construct delivery-specific maps or topics from a
combination of generic components and delivery-context-specific components.

Key referencing
The keyref mechanism makes it possible to have key words be displayed differently in different
deliverables. It also allows a single link to resolve to different targets in different deliverables.

@outputclass attribute
The @outputclass attribute provides a mechanism whereby authors can indicate specific rendition
intent where necessary. Note that the DITA specification does not define any values for the
@outputclass attribute; the use of the @outputclass attribute is processor specific.

While DITA is independent of any particular delivery format, it is a standard that supports the creation of
human-readable content. As such, it defines some fundamental document components including
paragraphs, lists, and tables. When there is a reasonable expectation that such basic document
components be rendered consistently, the DITA specification defines default or suggested renderings.

3.3 DITA topics
DITA topics are the basic units of DITA content and the basic units of reuse. Each topic contains a single
subject.

3.3.1 The topic as the basic unit of information
In DITA, a topic is the basic unit of authoring and reuse. All DITA topics have the same basic structure: a
title and, optionally, a body of content. Topics can be generic or more specialized; specialized topics
represent more specific information types or semantic roles, for example, <concept>, <task>, or
<reference>
DITA topics consist of content units that can be as generic as sets of paragraphs and unordered lists or
as specific as sets of instructional steps in a procedure or cautions to be considered before a procedure is
performed. Content units in DITA are expressed using XML elements and can be conditionally processed
using metadata attributes.

Classically, a DITA topic is a titled unit of information that can be understood in isolation and used in
multiple contexts. It is short enough to address a single subject or answer a single question but long
enough to make sense on its own and be authored as a self-contained unit. However, DITA topics also
can be less self-contained units of information, such as topics that contain only titles and short
descriptions and serve primarily to organize subtopics or links or topics that are designed to be nested for
the purposes of information management, authoring convenience, or interchange.

DITA topics are used by reference from DITA maps. DITA maps enable topics to be organized in a
hierarchy for publication. Large units of content, such as complex reference documents or book chapters,
are created by nesting topic references in a DITA map. The same set of DITA topics can be used in any
number of maps.

DITA topics also can be used and published individually; for example, one can represent an entire
deliverable as a single DITA document that consists of a root topic and nested topics. This strategy can

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 25 of 471

accommodate the migration of legacy content that is not topic-oriented; it also can accommodate
information that is not meaningful outside the context of a parent topic. However, the power of DITA is
most fully realized by storing each DITA topic in a separate XML document and using DITA maps to
organize how topics are combined for delivery. This enables a clear separation between how topics are
authored and stored and how topics are organized for delivery.

3.3.2 The benefits of a topic-based architecture
Topics enable the development of usable and reusable content.

While DITA does not require the use of any particular writing practice, the DITA architecture is designed to
support authoring, managing, and processing of content that is designed to be reused. Although DITA
provides significant value even when reuse is not a primary requirement, the full value of DITA is realized
when content is authored with reuse in mind. To develop topic-based information means creating units of
standalone information that are meaningful with little or no surrounding context.

By organizing content into topics that are written to be reusable, authors can achieve several goals:

• Content is readable when accessed from an index or search, not just when read in sequence as
part of an extended narrative. Since most readers do not read technical and business-related
information from beginning to end, topic-oriented information design ensures that each unit of
information can be read independently.

• Content can be organized differently for online and print delivery. Authors can create task flows
and concept hierarchies for online delivery and create a print-oriented hierarchy to support a
narrative content flow.

• Content can be reused in different collections. Since a topic is written to support random access
(as by search), it should be understandable when included as part of various product deliverables.
Topics permit authors to refactor information as needed, including only the topics that apply to
each unique scenario.

• Content is more manageable in topic form whether managed as individual files in a traditional file
system or as objects in a content management system.

• Content authored in topics can be translated and updated more efficiently and less expensively
than information authored in larger or more sequential units.

• Content authored in topics can be filtered more efficiently, encouraging the assembly and
deployment of information subsets from shared information repositories.

Topics written for reuse should be small enough to provide opportunities for reuse but large enough to be
coherently authored and read. When each topic is written to address a single subject, authors can
organize a set of topics logically and achieve an acceptable narrative content flow.

3.3.3 Disciplined, topic-oriented writing
Topic-oriented writing is a disciplined approach to writing that emphasizes modularity and reuse of
concise units of information: topics. Well-designed DITA topics can be reused in many contexts, as long
as writers are careful to avoid unnecessary transitional text.
Conciseness and appropriateness

Readers who are trying to learn or do something quickly appreciate information that is written in a
structure that is easy to follow and contains only the information needed to complete that task or
grasp a fact. Recipes, encyclopedia entries, car repair procedures; all serve up a uniquely focused
unit of information. The topic contains everything required by the reader.

Locational independence
A well-designed topic is reusable in other contexts to the extent that it is context free, meaning that it
can be inserted into a new document without revision of its content. A context-free topic avoids
transitional text. Phrases like "As we considered earlier" or "Now that you have completed the initial
step" make little sense if a topic is reused in a new context in which the relationships are different or

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 26 of 471

no longer exist. A well-designed topic reads appropriately in any new context because the text does
not refer the reader outside the topic.

Navigational independence

Most print publications or web pages are a mixture of content and navigation. Internal links lead a
reader through a sequence of choices as he or she navigates through a website. DITA supports the
separation of navigation from content by assembling independent topics into DITA maps.
Nonetheless, writers might want to provide links within a topic to additional topics or external
resources. DITA does not prohibit such linking within individual topics. The DITA relationship table
enables links between topics and to external content. Since it is defined in the DITA map, it is
managed independently of the topic content.

Links in the content are best used for cross-references within a topic. Links from within a topic to
additional topics or external resources are best avoided because they limit reuse of the topic. To link
from a term or keyword to its definition, use the DITA keyref facility to avoid creating topic-to-topic
dependencies that are difficult to maintain. See Key-based addressing (100)

3.3.4 Information typing
Information typing is the practice of identifying types of topics, such as concept, reference, and task, to
clearly distinguish between different types of information. Topics that answer different reader questions
(How do I? What is?) can be categorized with different information types. The base information types
provided by DITA specializations (for example, technical content, machine industry, and learning and
training) provide starter sets of information types that can be adopted immediately by many technical and
business-related organizations.

Information typing has a long history of use in the technical documentation field to improve information
quality. It is based on extensive research and experience, including Robert Horn's Information Mapping
and Hughes Aircraft's STOP (Sequential Thematic Organization of Proposals) technique. Note that many
DITA topic types are not necessarily closely connected with traditional Information Mapping.

Information typing is a practice designed to keep documentation focused and modular, thus making it
clearer to readers, easier to search and navigate, and more suitable for reuse. Classifying information by
type helps authors perform the following tasks:

• Develop new information more consistently
• Ensure that the correct structure is used for closely related kinds of information (retrieval-oriented

structures like tables for reference information and simple sequences of steps for task
information)

• Avoid mixing content types, thereby losing reader focus
• Separate supporting concept and reference information from tasks, so that users can read the

supporting information if needed and ignore if it is not needed
• Eliminate unimportant or redundant detail
• Identify common and reusable subject matter

DITA currently defines a small set of well-established information types that reflects common practices in
certain business domains, for example, technical communication and instruction and assessment.
However, the set of possible information types is unbounded. Through the mechanism of specialization,
new information types can be defined as specializations of the base topic type (<topic>) or as
refinements of existing topics types, for example, <concept>, <task>, <reference>, or
<learningContent>.

You need not use any of the currently-defined information types. However, where a currently-defined
information type matches the information type of your content, use the currently-defined information type,
either directly, or as a base for specialization. For example, for information that is procedural in nature,

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 27 of 471

use the task information type or a specialization of task. Consistent use of established information types
helps ensure smooth interchange and interoperability of DITA content.

3.3.5 Topic structure
All topics have the same basic structure, regardless of topic type: title, description or abstract, prolog,
body, related links, and nested topics.

All DITA topics must have an XML identifier (the @id attribute) and a title. The basic topic structure
consists of the following parts, some of which are optional:

Topic element
The topic element holds the required @id attribute and contains all other elements.

Title
The title contains the subject of the topic.

Alternate titles
Titles specifically for use in navigation or search. When not provided, the base title is used for all
contexts.

Short description or abstract
A short description of the topic or a longer abstract with an embedded short description. The short
description might be used both in topic content (as the first paragraph), in generated summaries that
include the topic, and in links to the topic. Alternatively, the abstract lets you create more complex
introductory content and uses an embedded short description element to define the part of the
abstract that is suitable for summaries and link previews.
While short descriptions are not required, they can make a dramatic difference to the usability of an
information set and should generally be provided for all topics.

Prolog
The prolog is the container for topic metadata, such as change history, audience, product, and so on.

Body
The topic body contains the topic content: paragraphs, lists, sections, and other content that the
information type permits.

Related links
Related links connect to other topics. When an author creates a link as part of a topic, the topic
becomes dependent on the other topic being available. To reduce dependencies between topics and
thereby increase the ability to reuse each topic, authors can use DITA maps to define and manage
links between topics, instead of embedding links directly in each related topic.

Nested topics
Topics can be defined inside other topics. However, nesting requires special care because it can
result in complex documents that are less usable and less reusable. Nesting might be appropriate for
information that is first converted from desktop publishing or word processing files or for topics that
are unusable independent from their parent or sibling topics.
The rules for topic nesting can be configured in a document-type shells. For example, the standard
DITA configuration for concept topics only allows nested concept topics. However, local configuration
of the concept topic type could allow other topic types to nest or disallow topic nesting entirely. In
addition, the @chunk attribute enables topics to be equally re-usable regardless of whether they are
separate or nested. The standard DITA configuration for ditabase document-type documents allows
unrestricted topic nesting and can be used for holding sets of otherwise unrelated topics that hold re-
usable content. It can also be used to convert DITA topics from non-DITA legacy source without first
determining how individual topics should be organized into separate XML documents.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 28 of 471

3.3.6 Topic content
The content of all topics, regardless of topic type, is built on the same common structures.

Topic body
The topic body contains all content except for that contained in the title or the short description/
abstract. The topic body can be constrained to remove specific elements from the content model; it
also can be specialized to add additional specialized elements to the content model. The topic body
can be generic while the topic title and prolog are specialized.

Sections and examples
The body of a topic might contain divisions, such as sections and examples. They might contain
block-level elements like titles and paragraphs and phrase-level elements like API names or text. It is
recommend that sections have titles, whether they are entered directly into the <title> element or
rendered using a fixed or default title.
Either body divisions or untitled sections or examples can be used to delimit arbitrary structures
within a topic body. However, body divisions can nest, but sections and examples cannot contain
sections.

<bodydiv>
The <bodydiv> element enables the arbitrary grouping of content within the body of a topic for the
purpose of content reuse. The <bodydiv> element does not include a title. For content that requires
a title, use <section> or <example>.

<div>
The <div> element enables the arbitrary grouping of content within a topic. The <div> element
does not include a title. For content that requires a title, use <section> or <example> or, possibly,
<fig>.

Block-level elements
Paragraphs, lists, figures, and tables are types of "block" elements. As a class of content, they can
contain other blocks, phrases, or text, though the rules vary for each structure.

Phrases and keywords
Phrase level elements can contain markup to label parts of a paragraph or parts of a sentence as
having special semantic meaning or presentation characteristics, such as <uicontrol> or .
Phrases can usually contain other phrases and keywords as well as text. Keywords can only contain
text.

Images
Images can be inserted to display photographs, illustrations, screen captures, diagrams, and more.
At the phrase level, they can display trademark characters, icons, toolbar buttons, and so forth.

Multimedia
The <object> element enables authors to include multimedia, such as diagrams that can be rotated
and expanded. The <foreign> element enables authors to include media within topic content, for
example, SVG graphics, MathML equations, and so on.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 29 of 471

3.4 DITA maps
This topic collection contains information about DITA maps and the purposes that they serve. It also
includes high-level information about DITA map elements, attributes, and metadata.

3.4.1 Definition of DITA maps
DITA maps are documents that organize topics and other resources into structured collections of
information. DITA maps specify hierarchy and the relationships among the topics; they also provide the
contexts in which keys are defined and resolved.

Maps draw on a rich set of existing best practices and standards for defining information models, such as
hierarchical task analysis. They also support the definition of non-hierarchical relationships, such as
matrices and groups, which provide a set of capabilities that has similarities to Resource Description
Framework (RDF) and ISO topic maps.

DITA maps use <topicref> elements to reference DITA topics, DITA maps, and non-DITA resources,
for example, HTML and TXT files. The <topicref> elements can be nested or grouped to create
relationships among the referenced topics, maps, and non-DITA files; the <topicref> elements can be
organized into hierarchies in order to represent a specific order of navigation or presentation.

DITA maps impose an architecture on a set of topics. Information architects can use DITA maps to specify
what DITA topics are needed to support a given set of user goals and requirements; the sequential order
of the topics; and the relationships that exist among those topics. Because DITA maps provide this
context for topics, the topics themselves can be relatively context-free; they can be used and reused in
multiple different contexts.

DITA maps often represent a single deliverable, for example, a specific Web site, a printed publication, or
the online help for a product. DITA maps also can be subcomponents for a single deliverable, for
example, a DITA map might contain the content for a chapter in a printed publication or the
troubleshooting information for an online help system. The DITA specification provides specialized map
types; book maps represent printed publications, and subject scheme maps represent taxonomic or
ontological classifications. However, these map types are only a starter set of map types reflecting well-
defined requirements.

Comment by robander on 7 April 2023
Updated to remove "learning" as a type of map the spec provides.

With tech comm becoming a separate spec, is it really correct to say "The DITA specification
provides...book maps"? We could say "The DITA specifications provide" (plural)? That seems simpler
for an overview topic than trying to explain "This package has one specialization and another package
[out later] has book maps"

Disposition: Unassigned

DITA maps establish relationships through the nesting of <topicref> elements and the application of
the @collection-type attribute. Relationship tables also can be used to associate topics with each
other based on membership in the same row; for example, task topics can be associated with supporting
concept and reference topics by placing each group in cells of the same row. During processing, these
relationships can be rendered in different ways, although they typically result in lists of "Related topics" or
"For more information" links. Like many aspects of DITA, the details about how such linking relationships
are presented is determined by the DITA processor.

DITA maps also define keys and organize the contexts (key scopes) in which key references are
resolved.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 30 of 471

3.4.2 Purpose of DITA maps
DITA maps enable the scalable reuse of content across multiple contexts. They can be used by
information architects, writers, and publishers to plan, develop, and deliver content.

DITA maps support the following uses:

Defining an information architecture
Maps can be used to define the topics that are required for a particular audience, even before the
topics themselves exist. DITA maps can aggregate multiple topics for a single deliverable.

Defining what topics to build for a particular output
Maps reference topics that are included in output processing. Information architects, authors, and
publishers can use maps to specify a set of topics that are processed at the same time, instead of
processing each topic individually. In this way, a DITA map can serve as a manifest or bill of
materials.

Defining navigation
Maps can define the online navigation or table of contents for a deliverable.

Defining related links
Maps define relationships among the topics they reference. These relationships are defined by the
nesting of elements in the DITA map, relationship tables, and the use of elements on which the
@collection-type attribute is set. On output, these relationships might be expressed as related
links or the hierarchy of a table of contents (TOC).

Defining an authoring context
The DITA map can define the authoring framework, providing a starting point for authoring new topics
and integrating existing ones.

Defining keys and key scopes
Maps can define keys, which provide an indirect addressing mechanism that enhances portability of
content. The keys are defined by <topicref> elements or specializations of <topicref>
elements, such as <keydef>. The <keydef> element is a convenience element; it is a specialized
type of a <topicref> element with the following attributes:

• A required @keys attribute
• A @processing-role attribute with a default value of "resource-only".

Maps also define the context or contexts for resolving key-based references, such as elements that
specify the @keyref or @conkeyref attribute. Elements within a map structure that specify a
@keyscope attribute create a new context for key reference resolution. Key references within such
elements are resolved against the set of effective key definitions for that scope.

Specialized maps can provide additional semantics beyond those of organization, linking, and indirection.
For example, the subjectScheme map specialization adds the semantics of taxonomy and ontology
definition.

3.4.3 DITA map attributes
DITA maps have unique attributes that are designed to control the way that relationships are interpreted
for different output purposes. In addition, DITA maps share many metadata and linking attributes with
DITA topics.

Comment by rodaande
We currently redefine a lot of attributes in this topic that are more comprehensively defined in the
element reference; we need to reconcile those that are defined differently and ideally reuse definitions.

Kris Eberlein, 28 September 2022

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 31 of 471

I alphabeticized the attributes in this topic. I also added them to draft comments in the definitions in the
"Attributes" topics, so that we could consider them side-by-side.

Disposition: Unassigned

DITA maps often encode structures that are specific to a particular medium or output, for example, Web
pages or a PDF document. Attributes, such as @deliveryTarget and @toc, are designed to help
processors interpret the DITA map for each kind of output.

Comment by Kristen J Eberlein on 04 July 2019

The following paragraph seems off ...

Disposition: Unassigned

Many of the following attributes are not available in DITA topics; individual topics, once separated from
the high-level structures and dependencies associated with a particular kind of output, should be entirely
reusable regardless of the intended output format.

@cascade

Specifies whether the default rules for the cascading of metadata attributes in a DITA map apply. The
following values are specified:

merge
Indicates that the metadata attributes cascade, and that the values of the metadata attributes
are additive. This is the processing default for the @cascade attribute.

nomerge
Indicates that the metadata attributes cascade, but that they are not additive for <topicref>
elements that specify a different value for a specific metadata attribute. If the cascading value for
an attribute is already merged based on multiple ancestor elements, that merged value
continues to cascade until a new value is encountered. That is, setting cascade="nomerge"
does not undo merging that took place on ancestor elements.

For more information, see 5.3.4.4 Example: How the cascade attribute affects attribute cascading
(76).

@chunk
Specifies that the processor generates an interim set of DITA topics that are used as the input for the
final processing. This can produce the following output results:

• Multi-topic files are transformed into smaller files, for example, individual HTML files for each
DITA topic.

• Individual DITA topics are combined into a single file.

Specifying a value for the @chunk attribute on a <map> element establishes chunking behavior that
applies to the entire map, unless overridden by @chunk attributes that are set on more specific
elements in the DITA map. For a detailed description of the @chunk attribute and its usage, see 5.4
Chunking (77).

@collection-type
The @collection-type attribute specifies how the children of a <topicref> element relate to
their parent and to each other. This attribute, which is set on the parent element, typically is used by
processors to determine how to generate navigation links in the rendered topics. For example, a
@collection-type value of "sequence" indicates that children of the specifying <topicref>
element represent an ordered sequence of topics; processors might add numbers to the list of child

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 32 of 471

topics or generate next/previous links for online presentation. This attribute is available in topics on
the <linklist> and <linkpool> elements, where it has the same behavior. Where the
@collection-type attribute is available on elements that cannot directly contain elements, the
behavior of the attribute is undefined.

@keys
Specifies one or more key names.

@keyscope
Defines a new scope for key definition and resolution, and gives the scope one or more names. For
more information about key scopes, see 6.4 Indirect key-based addressing (100).

@linking

By default, the relationships between the topics that are referenced in a map are reciprocal:

• Child topics link to parent topics and vice versa.
• Next and previous topics in a sequence link to each other.
• Topics in a family link to their sibling topics.
• Topics referenced in the table cells of the same row in a relationship table link to each other.

A topic referenced within a table cell does not (by default) link to other topics referenced in
the same table cell.

This behavior can be modified by using the @linking attribute, which enables an author or
information architect to specify how a topic participates in a relationship. The following values are
valid:

linking="none"
Specifies that the topic does not exist in the map for the purposes of calculating links.

linking="sourceonly"
Specifies that the topic will link to its related topics but not vice versa.

linking="targetonly"
Specifies that the related topics will link to it but not vice versa.

linking="normal"
Default value. It specifies that linking will be reciprocal (the topic will link to related topics, and
they will link back to it).

Authors also can create links directly in a topic by using the <xref> or <link> elements, but in
most cases map-based linking is preferable, because links in topics create dependencies between
topics that can hinder reuse.

Note that while the relationships between the topics that are referenced in a map are reciprocal, the
relationships merely imply reciprocal links in generated output that includes links. The rendered
navigation links are a function of the presentation style that is determined by the processor.

@processing-role
Specifies whether the topic or map referenced is processed normally or treated as a resource that is
only included in order to resolve key or content references.

processing-role="normal"
The topic is a readable part of the information set. It is included in navigation and search results.
This is the default value for the <topicref> element.

processing-role="resource-only"
The topic is used only as a resource for processing. It is not included in navigation or search
results, nor is it rendered as a topic. This is the default value for the <keydef> element.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 33 of 471

If the @processing-role attribute is not specified locally, the value cascades from the closest
element in the containment hierarchy.

@search
Specifies whether the topic is included in search indexes.

@toc
Specifies whether topics are excluded from navigation output, such as a Web site map or an online
table of contents. By default, <topicref> hierarchies are included in navigation output; relationship
tables are excluded.

Attributes in the list above are used exclusively or primarily in maps, but many important map attributes
are shared with elements in topics. DITA maps also use many of the following attributes that are used
with linking elements in DITA topics, such as <link> and <xref>:

• @format
• @href
• @keyref
• @scope
• @type

The following metadata and reuse attributes are used by both DITA maps and DITA topics:

• @rev, @status, @importance
• @dir, @xml:lang, @translate
• @id, @conref, @conrefend, @conkeyref, @conaction
• @props and any attribute specialized from @props, including those integrated by default in the

OASIS-provided document-type shells: @audience, @deliveryTarget, @platform,
@product, @otherprops

• @search
When new attributes are specialized from @props or @base as a domain, they can be incorporated into
both map and topic structural types.

3.5 DITA metadata
Metadata can be applied in both DITA topics and DITA maps. Metadata that is specified in DITA topics
can be supplemented or overridden by metadata that is assigned in a DITA map. This design facilitates
the reuse of DITA topics in different DITA maps and use-specific contexts.

DITA defines a core set of metadata elements to cover a variety of common scenarios. Because
metadata requirements vary so widely, it is expected that few implementations will use the full range of
these elements.

DITA also provides two generic elements, <data> and <othermeta>, which are intended for use when
the core metadata elements do not provide the correct semantic. In addition, <data> is especially useful
as a specialization base.

Requirements for rendering metadata vary widely. For that reason, any rendering of metadata in
published content is left up to implementations.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 34 of 471

3.5.1 Metadata elements
Metadata elements are available in both topics and DITA maps. This design enables authors and
information architects to use identical metadata markup in both topics and maps.

When used in maps, metadata elements are located in the <topicmeta> element. When used in topics,
metadata elements are located in the <prolog> element.

In general, specifying metadata in a <topicmeta> element that is a child of a <topicref> element is
equivalent to specifying it in the <prolog> element of the referenced topic. The value of specifying the
metadata in the map is that the topic then can be reused in other maps where different metadata might
apply. Many items in the <topicmeta> element cascade to nested <topicref> elements within the
map. See 5.3.2 Reconciling topic and map metadata elements (71) for information about which
elements cascade.

3.5.2 Metadata attributes
Metadata attributes specify properties of the content that can be used to determine how the content is
processed. Specialized metadata attributes can be defined to enable specific business-processing needs,
such as semantic processing and data mining.

Metadata attributes typically are used for the following purposes:

• Filtering content based on the attribute values, for example, to suppress or publish profiled
content

• Flagging content based on the attribute values, for example, to highlight specific content on output
• Performing custom processing, for example, to extract business-critical data and store it in a

database

The base DITA vocabulary includes five specializations of the @props attribute as domains: @audience,
@deliveryTarget, @platform, @product, and @otherprops. These five attributes are included in
all the map and topic document-type shells that are provided with the specification.

Metadata attributes fall into the following categories.

Architectural attributes
The @class, @DITAArchVersion, and @specializations attributes provide metadata about the
DITA source itself, such as what version of the grammar is used. These attributes are not intended
for use in authored content.

Filtering and flagging attributes

The @props attribute and its specializations are intended for filtering. This includes the five
specializations added to the OASIS document-type shells: @audience, @deliveryTarget,
@platform, @product, and @otherprops.

These attributes plus the @rev attribute are intended for flagging.

Other metadata attributes
The @status and @importance attributes, many of the attributes available on the <ux-window>
element, as well as custom attributes specialized from @base, are intended for application-specific
behaviors. Such behaviors include aiding in search and retrieval, as well as controlling how a user
assistance window is rendered.

Translation and localization attributes
The @dir, @translate, and @xml:lang attributes are intended for use with translating and
localizing content.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 35 of 471

3.5.3 Metadata in maps and topics
Metadata can be specified in both maps and topics. In most cases, metadata in the map either
supplements or overrides metadata that is specified at the topic level.

Metadata can be specified by all the following mechanisms:

• Metadata elements that are located in the DITA map
• Specifying attributes on the <map> or <topicref> elements
• Metadata elements or attributes that are located in the DITA topic

Metadata elements and attributes in a map might apply to an individual topic, a set of topics, or globally
for the entire document. Most metadata elements authored within a <topicmeta> element associate
metadata with the parent element and its children. Because the topics in a branch of the hierarchy
typically have some common subjects or properties, this is a convenient mechanism to define metadata
for a set of topics.

Comment by rodaande on 8 Feb 2022
We should have a related link from this topic to the section on cascading; this is a conceptual topic
about metadata and should not repeat the processing rules, but reading this I immediately want to
know *which* elements cascade and how that works.
Disposition: Unassigned

When the same metadata element or attribute is specified in both a map and a topic, by default the value
in the map takes precedence. The assumption is that the map author has more knowledge of the reusing
context than the topic author.

3.5.4 Window metadata for user assistance
Some user assistance topics might need to be displayed in a specific window or viewport, and this
windowing metadata can be defined in the DITA map within the <ux-window> element.

In some help systems, a topic might need to be displayed in a window with a specific size or set of
features. For example, a help topic might need to be displayed immediately adjacent to the user interface
control that it supports in a window of a specific size that always remains on top, regardless of the focus
within the operating system.

Application metadata that is specified on the <ux-window> element is closely tied to that specific
application. It might be ignored when content is rendered for other uses.

Related reference
resourceid (292)
A resource ID is an identifier that is designed for applications that need to use their own identifier
scheme, such as context-sensitive help systems and databases.

ux-window (273)
A UX window specification is a collection of metadata for a window or viewport in which a user
assistance topic or web page can be displayed. The window or viewport can be referenced by the
<resourceid> element that is associated with a topic or <topicref> element.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 36 of 471

4 Accessibility and translation
Content needed

4.1 Accessibility
DITA has markup and features that enable producing output that is accessible by all audiences.

4.1.1 Handling accessibility in content and in processors
Accessibility requirements vary depending on how content is rendered. Making content accessible is work
that involves both content authors and the processors that render DITA content.

The foundation for accessible content is the Web Content Accessibility Guidelines (WCAG) from W3C.
While content formats and content authors might have unique or additional accessibility needs, the rules
outlined in the WCAG provide a reference point for considering how to create accessible content in DITA.

The guidelines fall into several categories:

General content guidelines

Many accessibility guidelines and best practices apply to all content. Such guidelines are generally
outside the scope of this specification.

For example, a guideline might recommend against multiple levels of nested unordered lists,
because such lists are difficult to navigate with a screen reader. As a general content standard, DITA
cannot prohibit such nesting. However, implementations can prevent such nesting through business
processes or rule-based processing such as Schematron.

Another common accessibility recommendation is to avoid flashing or flickering video content. The
DITA <video> element is a general mechanism for including video, and the content of that video is
outside the scope of this specification.

Markup guidelines

Other accessibility guidelines require the use of specific DITA markup. Such guidelines are
addressed in this specification.

For example, a requirement that images specify alternate text requires the use of the <alt> element
within the 

4.1.4.2 Example: Alternate text for an image map
In this scenario, alternate text is provided for an image map.

The following image shows "The Brontë Sisters". This portrait is in the collection of the National Portrait
Gallery, London. The images of the three Brontë sisters (Charlotte, Emily, and Ann) are linked to their
Wikipedia pages.

1. Charlotte Brontë
2. Emily Brontë
3. Anne Brontë

The following code sample shows how the <imagemap> element is used to generate the above image
map, as well as how alternate text can be provided to ensure accessibility:

<imagemap id="bronte-sisters">
 <image href="Bronte_Sisters.jpg" id="bronte-sisters">
 <alt>Portrait of "The Brontë Sisters"</alt>
 </image>
 <!-- Area #1: Charlotte Brontë -->
 <area>
 <shape>poly</shape>
 <coords>408, 345, 410, 223, 360, 158, 369, 98, 363, 65, 355, 46,

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 40 of 471

https://en.wikipedia.org/wiki/Charlotte_Bront%C3%AB
https://en.wikipedia.org/wiki/Emily_Bront%C3%AB
https://en.wikipedia.org/wiki/Anne_Bront%C3%AB

 337, 34, 318, 36, 313, 46, 295, 58, 290, 69, 279, 79, 278, 95,
 281, 103, 273, 116, 282, 141, 292, 148, 298, 165, 266, 196, 252,
 211, 245, 249, 227, 272, 224, 315, 234, 350, 408, 349</coords>
 <xref format="html" scope="external"
 href="https://en.wikipedia.org/wiki/Charlotte_Bront%C3%AB">
 Charlotte Brontë</xref>
 </area>
 <!-- Area #2: Emily Brontë -->
 <area>
 <shape>poly</shape>
 <coords>228, 343, 211, 289, 203, 278, 194, 249, 204, 221, 177, 178,
 161, 157, 180, 138, 202, 112, 201, 69, 175, 52, 144, 45, 114, 52,
 102, 75, 98, 90, 103, 114, 118, 131, 135, 149, 141, 154, 118,
 197, 100, 226, 86, 234, 85, 254, 121, 318, 109, 328, 123, 350,
 230, 349</coords>
 <xref format="html" scope="external"
 href="https://en.wikipedia.org/wiki/Emily_Bront%C3%AB">
 Emily Brontë</xref>
 </area>
 <!-- Area #3: Anne Brontë -->
 <area>
 <shape>poly</shape>
 <coords>0, 347, 1, 252, 29, 225, 24, 195, 30, 161, 41, 123, 76,
 110, 103, 119, 119, 137, 135, 154, 129, 172, 116, 195, 98, 224,
 85, 231, 81, 252, 116, 317, 106, 329, 119, 350</coords>
 <xref format="html" scope="external"
 href="https://en.wikipedia.org/wiki/Anne_Bront%C3%AB">
 Anne Brontë</xref>
 </area>
</imagemap>

The <alt> element provides alternate text for the image as a whole, and the content of the <xref>
elements provide alternate text for each of the linked regions.

The following image shows the areas that are defined by the image map:

The following table lists the link targets and alternate text for each of the defined areas:

Area Alternate text Link target

1 Charlotte Brontë Wikipedia entry for Charlotte Brontë

2 Emily Brontë Wikipedia entry for Emily Brontë

3 Anne Brontë Wikipeda entry for Anne Brontë

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 41 of 471

https://en.wikipedia.org/wiki/Charlotte_Bront%C3%AB
https://en.wikipedia.org/wiki/Emily_Bront%C3%AB
https://en.wikipedia.org/wiki/Anne_Bront%C3%AB

4.1.4.3 Example: Fallback information for multimedia content
In this scenario, fallback content is provided for systems that cannot display multimedia content.

The referenced video provides an image as fallback. If a system does not support video, it will display the
image video-not-available.png, which specifies its own alternate text.

<video height="300px"
 loop="false"
 muted="false"
 width="400px">
 <desc>A video that illustrates how to conduct a system health scan.</desc>
 <fallback>
 <image href="video-not-available.png">
 <alt>This video cannot be displayed.</alt>
 </image>
 </fallback>
 <video-poster keyref="demo1-video-poster"
 <media-source href="video.mp4" format="video/mp4"/>
</video>

4.1.4.4 Example: Simple table with accessibility markup
In this scenario, the topic author uses a header row and the @keycol attribute to ensure that the table is
accessible

In the following code sample, the <sthead> element identifies the header row, and @keycol attribute
identifies the header column:

<simpletable frame="all" relcolwidth="1* 1*" keycol="1">
 <sthead>
 <stentry>Type of room</stentry>
 <stentry>Price per day</stentry>
 </sthead>
 <strow>
 <stentry>Single bed</stentry>
 <stentry>$125.00</stentry>
 </strow>
 <strow>
 <stentry>Two double beds</stentry>
 <stentry>$150.00</stentry>
 </strow>
 <strow>
 <stentry>Queen or king bed</stentry>
 <stentry>$165.00</stentry>
 </strow>
</simpletable>

This table might be rendered in the following way:

4.1.4.5 Example: Complex table with accessibility markup
In the following code sample, the table uses the <thead> element to identify header rows and the
@rowheader attribute to identify a header column. These header relationships can be used to

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 42 of 471

automatically create renderings of the table in other formats, such as HTML, that can be navigated using
a screen reader or other assistive technology.

<table frame="all" rowheader="firstcol">
 <title>Sample of automated table accessibility</title>
 <desc>Names are listed in the column c1. Points are listed in both data columns, with
 expected points in column c2 and actual points in column c3.</desc>
 <tgroup cols="3">
 <colspec colname="c1"/>
 <colspec colname="c2"/>
 <colspec colname="c3"/>
 <thead>
 <row>
 <entry morerows="1">Name</entry>
 <entry namest="c2" nameend="c3">Points</entry>
 </row>
 <row>
 <entry>Expected</entry>
 <entry>Actual</entry>
 </row>
 </thead>
 <tbody>
 <row>
 <entry>Mark</entry>
 <entry>10,000</entry>
 <entry>11,123.45</entry>
 </row>
 <row>
 <entry>Peter</entry>
 <entry>9,000</entry>
 <entry>11,012.34</entry>
 </row>
 <row>
 <entry>Cindy</entry>
 <entry>10,000</entry>
 <entry>10,987.64</entry>
 </row>
 </tbody>
 </tgroup>
</table>

In this code sample, navigation information for assistive technology is derived from two sources:

• The <thead> element contains two rows, and indicates that each entry in those header rows is a
header cell for that column. This means that each body cell can be associated with the header cell
or cells above the column. For example, in the second body row, the entry "Peter" is associated
with the header "Name"; similarly, the entry "9,000" is associated with the headers "Expected" and
"Points".

• The @rowheader attribute that is specified on <table> indicates that the first column plays a
role as a row header. This means that the header cell in column one is associated with the other
body cells in the same row. For example, in the second body row, the entry "9,000" is associated
with the header "Peter".

As a result of these two sets of headers, a rendering of the table associates the entry "9,000" with three
headers: "Peter", "Expected", and "Points", thus making it fully navigable by a screen reader or other
assistive technology. When the user navigates to the cell containing "9,000", it can report the headers
"Peter", "Expected", and "Points" as the headers for that cell.

The output might be rendered in the following way:

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 43 of 471

The rendered HTML used by a screen reader might look as follows.

<table>
 <caption>
 Sample of automated table accessibility
 Names are listed in the column c1. Points are listed in both data
columns,
 with expected points in column c2 and actual points in column c3.
 </caption>
 <colgroup><col><col><col></colgroup>
 <thead>
 <tr>
 <th id="source__entry__1" rowspan="2">Name</th>
 <th id="source__entry__2" colspan="2">Points</th>
 </tr>
 <tr>
 <th id="source__entry__3">Expected</th>
 <th id="source__entry__4">Actual</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <th scope="row" id="source__entry__5" headers="source__entry__1">Mark</th>
 <td headers="source__entry__5 source__entry__2 source__entry__3">10,000</td>
 <td headers="source__entry__5 source__entry__2 source__entry__4">11,123.45</td>
 </tr>
 <tr>
 <th scope="row" id="source__entry__8" headers="source__entry__1">Peter</th>
 <td headers="source__entry__8 source__entry__2 source__entry__3">9,000</td>
 <td headers="source__entry__8 source__entry__2 source__entry__4">11,012.34</td>
 </tr>
 <tr>
 <th scope="row" id="source__entry__11" headers="source__entry__1">Cindy</th>
 <td headers="source__entry__11 source__entry__2 source__entry__3">10,000</td>
 <td headers="source__entry__11 source__entry__2 source__entry__4">10,987.64</td>
 </tr>
 </tbody>
</table>

4.1.4.6 Example: Complex table with some manually-specified accessibility
markup
In some complex tables, the <thead> element and @rowheader attribute might not be enough to
support all accessibility needs. Assume that a table is designed so that names are listed across the top
row, instead of in the first column, with both the first and second columns also functioning as headers:

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 44 of 471

Note The table in this example is not meant to illustrate a best practice; this specific example would
likely prove difficult to navigate using a screen reader even with proper header markup. This
example is only intended to illustrate the full range of manual accessibility markup that is
available should the need arise.

Here, the @rowheader attribute cannot be used, because it is only able to specify the first column as a
header column. In this case, the @scope attribute can be used to indicate that entries in the first and
second columns function as headers for the entire row (or row group, in the case of a cell that spans
more than one row).

The following code sample demonstrates the use of the @scope attribute to facilitate navigation of these
rows by a screen reader or other assistive technology. Note that the <thead> element is still used to
imply a header relationship with the names at the top of each column.

<table frame="all">
 <title>Sample with two header columns</title>
 <tgroup cols="5">
 <colspec colname="c1"/>
 <colspec colname="c2"/>
 <colspec colname="c3"/>
 <colspec colname="c4"/>
 <colspec colname="c5"/>
 <thead>
 <row>
 <entry namest="c1" nameend="c2">Name</entry>
 <entry>Mark</entry>
 <entry>Peter</entry>
 <entry>Cindy</entry>
 </row>
 </thead>
 <tbody>
 <row>
 <entry morerows="1" scope="rowgroup">Points</entry>
 <entry scope="row">Expected</entry>
 <entry>10,000</entry>
 <entry>9,000</entry>
 <entry>10,000</entry>
 </row>
 <row>
 <entry scope="row">Actual</entry>
 <entry>11,123.45</entry>
 <entry>11,012.34</entry>
 <entry>10,987.64</entry>
 </row>
 </tbody>
 </tgroup>
</table>

The rendered HTML used by a screen reader might look as follows.

<table>
 <caption>Sample with two header columns</caption>
 <colgroup><col><col><col><col><col></colgroup>
 <thead>
 <tr>
 <th id="source__entry__1" colspan="2">Name</th>
 <th id="source__entry__2">Mark</th>
 <th id="source__entry__3">Peter</th>
 <th id="source__entry__4">Cindy</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <th headers="source__entry__1" rowspan="2" scope="rowgroup"><strong class="ph
b">Points</th>
 <th headers="source__entry__1" scope="row"><strong class="ph b">Expected</th>
 <td headers="source__entry__2">10,000</td>
 <td headers="source__entry__3">9,000</td>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 45 of 471

 <td headers="source__entry__4">10,000</td>
 </tr>
 <tr>
 <th headers="source__entry__1" scope="row"><strong class="ph b">Actual</th>
 <td headers="source__entry__2">11,123.45</td>
 <td headers="source__entry__3">11,012.34</td>
 <td headers="source__entry__4">10,987.64</td>
 </tr>
 </tbody>
</table>

4.1.4.7 Example: Complex table with manual accessibility markup
In extremely complex tables, such as those with a single header cell in the middle of the table, fine-
grained accessibility controls are available to explicitly associate any content cell with any header cell.
This might also be useful for cases where processors do not support implied accessibility relationships
that exist based on header markup such as <thead>.

In the following sample, header cells are identified using the @id attribute, which is referenced using the
@headers attribute on appropriate content cells. This makes all header relationships in the table explicit.
Note that this sample ignores the @scope attribute, which could be used to exercise manual control
without setting as many attribute values; it also ignores the fact that <thead> creates a header
relationship even when the @id and @headers attributes are not used.

<table frame="all">
 <title>Sample with fully manual accessibility control</title>
<desc>Names are listed in the column c1. Points are listed in both data columns, with
expected points in column c2 and actual points in column c3.</desc>
 <tgroup cols="3">
 <colspec colname="c1"/>
 <colspec colname="c2"/>
 <colspec colname="c3"/>
 <thead>
 <row>
 <entry morerows="1"> </entry>
 <entry namest="c2" nameend="c3" id="pts">Points</entry>
 </row>
 <row>
 <entry id="exp" headers="pts">Expected</entry>
 <entry id="act" headers="pts">Actual</entry>
 </row>
 </thead>
 <tbody>
 <row>
 <entry id="name1">Mark</entry>
 <entry headers="name1 exp pts">10,000</entry>
 <entry headers="name1 act pts">11,123.45</entry>
 </row>
 <row>
 <entry id="name2">Peter</entry>
 <entry headers="name2 exp pts">9,000</entry>
 <entry headers="name2 act pts">11,012.34</entry>
 </row>
 <row>
 <entry id="name3">Cindy</entry>
 <entry headers="name3 exp pts">10,000</entry>
 <entry headers="name3 act pts">10,987.64</entry>
 </row>
 </tbody>
 </tgroup>
</table>

The output might be rendered in the following way:

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 46 of 471

The rendered HTML used by a screen reader might look as follows.

<table>
 <caption>Sample with fully manual accessibility control
 Names are listed in the column c1. Points are listed in both
data columns, with
 expected points in column c2 and actual points in column c3.</caption>
 <colgroup><col><col><col></colgroup>
 <thead>
 <tr>
 <th id="entry__1" rowspan="2"> </th>
 <th id="pts" colspan="2">Points</th>
 </tr>
 <tr>
 <th id="exp" headers="pts">Expected</th>
 <th id="act" headers="pts">Actual</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td id="name1" headers="entry__1">Mark</td>
 <td headers="name1 pts exp">10,000</td>
 <td headers="name1 pts act">11,123.45</td>
 </tr>
 <tr>
 <td id="name2" headers="entry__1">Peter</td>
 <td headers="name2 pts exp">9,000</td>
 <td headers="name2 pts act">11,012.34</td>
 </tr>
 <tr>
 <td id="name3" headers="entry__1">Cindy</td>
 <td headers="name3 pts exp">10,000</td>
 <td headers="name3 pts act">10,987.64</td>
 </tr>
 </tbody>
</table>

4.2 Translation and localization
DITA has markup that facilitates translation and localization. This markup includes the @xml:lang
attribute, the @dir attribute, and the @translate attribute.

4.2.1 The @xml:lang attribute
The @xml:lang attribute specifies the language and optional locale of the content that is contained in an
element. The @xml:lang attribute is described in the XML Recommendation.

Since the @xml:lang attribute is an inherent property of the XML document, it does not behave in the
same way as other DITA metadata attributes do.

Within topic and map documents, the @xml:lang attribute applies to the content and attributes that are
contained by the element on which it is specified. This means that it supplies a value for lower-level
elements in the containment hierarchy that do not supply their own value for the @xml:lang attribute.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 47 of 471

http://www.w3.org/TR/REC-xml/#sec-lang-tag

However, any such value is overridden when an @xml:lang attribute with a different value is specified on
lower-level elements in the containment hierarchy.

When the @xml:lang attribute is specified on a topic reference, it does not apply to the referenced
resource. This means that the value of the @xml:lang attribute on a topic reference (or the root element
of the map) does not automatically supply a default value for the referenced topic or DITA map.

For topic and map documents, if no value for the @xml:lang value is specified explicitly or on a higher-
level element in the containment hierarchy, a processor-determined default value is assumed.

4.2.1.1 Recommendations for the @xml:lang attribute
Specifying the @xml:lang attribute in the DITA source facilitates translation and helps ensure that
processors will handle content appropriately. Accordingly, this specification makes certain best-practices
recommendations for where the @xml:lang attribute should be set.

Setting the @xml:lang attribute in the source-language document facilitates the translation process.
Some translation tools do not support adding new markup to the document that is being translated, so if
the source language content does not set the @xml:lang attribute, it might be difficult or impossible for a
translator to add the @xml:lang attribute to the translated document.

In addition, setting the @xml:lang attribute in the DITA source ensures that processors handle content in
a language- and locale-appropriate way. If the @xml:lang attribute is not set, processors might assume
a default value which is inappropriate for the DITA content.

The following table outlines the recommended use of the @xml:lang attribute in topics and maps. These
recommendations ensure that DITA resources have an effective default language.

DITA resource Recommended use

DITA topic document that contains a single language Specify the @xml:lang attribute on the root element of
the document.

DITA topic document that contains more than one
language

Specify the primary language and locale that applies to
the topic on the highest-level element that contains
content. If part of a topic is written in a different
language, enclose that content in an element with the
@xml:lang attribute set appropriately. This applies to
both block and inline elements that use the alternate
language.

DITA map Specify the @xml:lang attribute on the root element of
the map. This applies both to the root map and any
submaps.

4.2.1.2 Processing expectations regarding the @xml:lang attribute
When the @xml:lang attribute is specified as recommended, a language for the content is clearly
indicated. However, when the @xml:lang attribute is not specified, processors might need to assign a
default value.

003 (384) If the root element of a map or a top-level topic has no value for the @xml:lang
attribute, a processor SHOULD assume a default value. The default value of the
processor can be either fixed, configurable, or derived from the content itself, such
as the @xml:lang attribute on the root map.

004 (384) When a @conref or @conkeyref attribute is used to include content from one
element into another, the processor MUST use the effective value of the

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 48 of 471

@xml:lang attribute from the referenced element. If the referenced element does
not have an explicit value for the @xml:lang attribute, the processor SHOULD use
the default value.

005 (384) Processors SHOULD render each element in a way that is appropriate for its
language as identified by the @xml:lang attribute.

4.2.1.3 Example: content reference and the @xml:lang attribute
This example outlines how processors determine the effective value of the @xml:lang attribute for
content that is referenced by the @conref or @conkeyref attribute.

In this scenario, a company has a notices topic that contains warnings in multiple languages. The notices
topic specifies an @xml:lang attribute of "en". However, it contains content that is reused from topics
that explicitly set the @xml:lang attribute to "fr" and "de".

The following code block shows the content of the DITA topic that contains the referencing elements:

Figure 3: Topic that contains the conrefs

<topic xml:lang="en" id="notices">
 <title>NOTICES</title>
 <shortdesc>Be sure to read all product safety information before using the product.</
shortdesc>
 <body>
 <note id="warning-english" conref="warnings-en.dita#warnings/general"/>
 <note id="warning-french" conref="warnings-fr.dita#warnings/general"/>
 <note id="warning-german" conref="warnings-de.dita#warnings/general"/>
 <!-- ... All supported languages for the product ... -->
 </body>
</topic>

The following code blocks show the content of the topics that contains the referenced elements:

Figure 4: English warnings topic: warnings-en.dita

<topic id="warnings" xml:lang="en">
 <title>Reusable warnings (English)</title>
 <body>
 <note id="general">General notice about using the product...</note>
 <note id="water">Warning about using the product near water...</note>
 <!-- Other reusable warnings -->
 </body>
</topic>

Figure 5: French warnings topic: warnings-fr.dita

<topic id="warnings" xml:lang="fr">
 <title>Reusable warnings (French)</title>
 <body>
 <note id="general">(French translation of: General notice about using the product...)</note>
 <note id="water">(French translation of: Warning about using the product near water...)</
note>
 <!-- Other reusable warnings -->
 </body>
</topic>

Figure 6: German warnings topic: warnings-de.dita

<topic id="warnings" xml:lang="de">
 <title>Reusable warnings (German)</title>
 <body>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 49 of 471

 <note id="general">(German translation of: General notice about using the product...)</note>
 <note id="water">(German translation of: Warning about using the product near water...)</
note>
 <!-- Other reusable warnings -->
 </body>
</topic>

When the topic that contains the conrefed notes is processed, the following occurs:

• The <note> element with the @id attribute set to "warning-french" has an effective value for the
@xml:lang attribute of "fr".

• The <note> element with the @id attribute set to "warning-german" has an effective value for the
@xml:lang attribute of "de".

In each case, the effective value of the @xml:lang attribute for the note is determined by the value of the
@xml:lang attribute that is specified on the topic that contains the referenced element, instead of the
value of the @xml:lang attribute that is specified on the notices topic that contains the referencing
elements.

4.2.2 The @dir attribute
The @dir attribute provides instructions to processors about how bidirectional text is rendered.

The @dir attribute identifies or overrides the text directionality. The following values are valid:

lro
Indicates an override of the Unicode Bidirectional Algorithm, forcing the element into left-to-right
mode.

ltr
Indicates left-to-right.

rlo
Indicates an override of the Unicode Bidirectional Algorithm, forcing the element into right-to-left
mode.

rtl
Indicates right-to-left.

-dita-use-conref-target
See 7.3.6 Using the -dita-use-conref-target value (149) for more information.

4.2.2.1 The Unicode Bidirectional Algorithm
The Unicode Bidirectional Algorithm plays a critical role in ensuring that bidirectional text is correctly
rendered.

Bidirectional text is text that contains text in both text directionalities, right-to-left (RTL) and left-to-right
(LTR). Common examples of bidirectional text include the following:

• Documents in RTL languages such as Arabic, Hebrew, Farsi, Urdu, and Yiddish that include
numerics or embedded sections of LTR text

• Documents that contain text in both LTR and RLT languages, for example, a topic that lists the
names of a movie in multiple languages

The Unicode Bidirectional Algorithm specifies how text should be rendered for a given language. For
more information about the Unicode Bidirectional Algorithm, see the following resources:

• Unicode Bidirectional Algorithm, Unicode Standard Annex #9
• Specifying the direction of text and tables: the dir attribute, HTML 4.01 Specification

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 50 of 471

https://www.unicode.org/reports/tr9/
https://www.w3.org/TR/html4/struct/dirlang.html#h-8.2

• Inline markup and bidirectional text in HTML, W3C internationalization article
• XHTML Bi-directional Text Attribute Module, XHTML 2.0 W3C Working Draft 22

4.2.2.2 Recommended usage of the @dir attribute
Typically, processors that fully support the Unicode Bidirectional Algorithm handle bidirectional text
without the need to specify directionality in the DITA source, if the @xml:lang attribute is specified on the
highest-level element.

The need to specify the @dir attribute primarily occurs in the following situations:

• Processors that do not fully support the Unicode Bidirectional Algorithm
• Documents that contain bidirectional text and characters with neutral bidirectionality

For the above situations, we recommend that DITA source documents, in addition to specifying the
@xml:lang attribute, also specify the @dir attribute on the highest-level element that is necessary.

4.2.2.3 Processing expectations regarding the Unicode Bidirectional Algorithm
Processor support for the Unicode Bidirectional Algorithm is critical.

006 (384) DITA processors SHOULD fully support the Unicode Bidirectional Algorithm. This
ensures that processors can implement the script and directionality for each
language that is used in a document.

4.2.3 The @translate attribute
The @translate attribute provides information about whether the content of an element should be
translated.

The following values are valid: "yes", "no", and "-dita-use-conref-target".

A few elements have the @translate attribute set by default to "no". These elements include <draft-
comment> and <required-cleanup>, all elements that are designed to hold content that is not
intended for publication.

The non-normative appendix, F Element-by-element recommendations for translators (443), includes
information on whether the element is block or inline, whether the element contents are likely to be
suitable for translation, and whether the element has attributes whose values might need translation.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 51 of 471

https://www.w3.org/International/articles/inline-bidi-markup/
https://www.w3.org/TR/2004/WD-xhtml2-20040722/mod-bidi.html

5 DITA map processing
Introduction to this chapter to be written later, when content is more stable.

5.1 DITA maps and their usage
New topic cluster to hold normative architectural content about DITA maps. Currently holds notes about
material that we intend to cover in the new topic cluster.

Comment by Kristen J Eberlein on 02 December 2021

Zoe made the following comment during review A:

"Why are we talking about hierarchical links when discussing rendering expectations for related-links?
I'm not sure this is the right location for this information. However, I'm not sure where that information
is. I was trying to figure out where it's spelled out how parent/child links are 'expected' to be rendered
and I didn't have luck finding it (partially because I went cross-eyed looking at the 104 references to
"linking".)"

Can we please add a related link [from the related-links topic] to the related-links section of the spec?

Disposition: Unassigned

Topical areas
• How <topicref> elements establish hierarchies including parent/child relationships and next/

previous relationships.
• Map-group elements

– Role as convenience elements—in most (all?) cases, the same function can be
accomplished with base elements. For example, <topichead> is effectively no different
than <topicref> with nothing but a title.

– Special role of <topicgroup>, which does not contribute to hierarchy
• How relationship tables establish linking relationships between topic references
• Meaning of titles (and navigation titles) on maps, submaps, mapgroup elements, and relationship

tables
• Link relationships created by attributes and nesting in DITA maps

Current topics with applicable content
Topic Applicable content

3.4.5.1 Example: DITA map that
references a subordinate map

Resolution of a submap.

3.4.5.2 Example: DITA map with a
simple relationship table

How links are generated from a relationship table; how processors might
represent a relationship table.

3.4.5.3 Example: How the
@collection-type and
@linking determine links

Effect of @collection-type and @linking attributes on generated links.

6.1 Navigation Container topic; incorporate into new "DITA maps and their usage" cluster.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 52 of 471

Topic Applicable content

6.1.1 Table of contents All content is applicable and needs to be incorporated into the new "DITA
maps and their usage" cluster – Closest thing we currently have to a topic
about how maps create hierarchies.

9.3.1.1 <map> Relationships between topics created by map hierarchy or @collection-
type attribute; role of titles, especially in submaps.

9.3.1.2 <topicref> Role of <topicref> nesting in creating containment hierarchies and
parent-child relationships.

9.3.1.6 <reltable> Relationship table titles – Processing expectations for relationship tables
(not rendered, used to generate links) – “Within a map tree, the effective
relationship table is the union of all relationship tables in the map.” – How a
DITA-aware tool might represent the <reltable> element graphically.

9.3.1.10 <relcolspec> How labels for related links from a relationship table are generated.

9.3.2.3 <mapref> “The hierarchy of the referenced map is merged into the container map at
the position of the reference, and the relationship tables of the child map are
added to the parent map.”

9.3.2.4 <topicgroup> How processors handle navigation titles within <topicgroup> elements.

9.8.13.10 The @format attribute How processors determine the value of the @format attribute when it is not
explicitly set.

Possible new topics
• DITA maps
• Relationship tables
• Creating navigational hierarchies
• Defining links between resources

5.1.1 Imposing roles when referencing a map
When specialized <topicref> elements reference a map, they might imply a semantic role for the
referenced content. The @impose-role attribute provides a mechanism to declare that such references
impose their original role on referenced content.

In many cases the <topicref> element is specialized in order to create a specific role for the reference.
For example, the <keydef> element creates a new role for the reference, but does not create a role for
the target of the reference. In other cases, the element is specialized to create a role for the target of the
reference. For example, in the Bookmap specialization from the DITA Technical Communication
specializations, the <chapter> element creates a role for the target of the reference: it declares that the
referenced content is a chapter in the context of this map.

The declaration of roles can be harder to follow when the target of a reference is a map or branch of a
map. In such cases, a <topicref> element can reference a map, which in turn references content.
When resolving those references, processors need to know which roles created by the <topicref>
elements need to be preserved for the content.

For example, assume a <setupProject> element that is specialized from <topicref> indicates that
the referenced content plays the "setup a project" role in a publication. This might result in special
formatting or generated headings when the content is rendered. If that element refers to a map instead of
a topic, that specialized role still needs to be passed on to topics in the referenced map - regardless of
what <topicref> elements might be used in that referenced map.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 53 of 471

The @impose-role attribute provides a way for specialized elements to declare whether processors
should use this behavior. This attribute is only evaluated when a <topicref> element refers to a map or
branch of a map. In that case, it indicates whether the element provides a role for content that should be
passed on to content in the referenced map.

The role created by a <topicref> is reflected by the @class hierarchy of the element. Processors that
need to do something with the role do it based on that @class attribute. In the <setupProject>
example above, that might be a @class attribute like "- map/topicref taskmap/setupProject
". Processors working with the reference know to render the referenced content based on that value.
When <setupProject> instead pulls in content from another map, processors need to preserve that
intent. Effectively, they need to preserve awareness of that @class attribute value for topics that are
indirectly referenced through the other map.

Specialized topic references achieve this behavior by setting up a default value for the @impose-role
attribute on the new element: impose-role="impose".

When a role is imposed in this manner, it does not apply to all content referenced by the element. If a
<topicref> refers to a branch of a map, the role is imposed only on the root element of that branch. If a
<topicref> refers to an entire map, the role is imposed only on the highest-level topic references within
that map. The role does not cascade to other nested referencs within the map. For example, if a
<chapter> element applied that role to every reference in another map, that map would be made up
only of chapters nested within chapters.

For elements that do not create a role for the referenced content, the @impose-role attribute is defined
with a default value indicating that the target of the reference keeps its original role: impose-
role="keeptarget". For example, the <mapref> element is a convenience element used to simplify
references to other maps. It does not force the content in other maps to be treated as <mapref> - no
special role is created for the referenced content. For this reason, it is defined in the grammar file with a
fixed value of "keeptarget".

007 (384) In some cases, preserving the role of a referencing element might result in out-of-
context content. For example, a <chapter> element in one bookmap could pull in
a <part> element from another bookmap, where that referenced <part> also
contains nested <chapter> elements. Treating the <part> element as a
<chapter> will result in a chapter that nests other chapters, which is not valid in
bookmap and might not be understandable by processors. The result is
implementation specific. Processors MAY choose to treat this as an error, issue a
warning, or simply assign new roles to the problematic elements.

Defining a fixed role for a specialized element
In the Bookmap specialization from the OASIS DITA Technical Communications specializations, the
<chapter> element creates a role for the referenced topic. In many contexts (such as a PDF version of
the map), this will result in special formatting that identifies the topic as the start of a chapter.

When a chapter element refers to another map, topic references in that other map need to be treated as
chapters in order to retain the structure of the book. The @impose-role attribute is set to a fixed value
of "impose", which lets processors know that the role needs to be preserved for content in the other map.

In an RNG grammar file, this default value can be set as follows:

<optional>
 <attribute name="impose-role" a:defaultValue="keeptarget">
 <value>keeptarget</value>
 </attribute>
</optional>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 54 of 471

In a DTD grammar file, this default value can be set as follows:

impose-role
 (impose)
 'impose'

With these fixed values, a <chapter> element that refers to a map will impose the role of "chapter" as
expected.

Imposing a role on a branch of a map
In this scenario, a specialized <chapter> element refers to a branch of another map. The chapter
element does not need to set the @impose-role attribute directly, because it is defined with a default
value in the XML grammar files. The element itself refers to a specific branch of the map, setting the
@format attribute to indicate this is a map reference:

<bookmap>
 <!-- ... title, front matter, and other chapters -->
 <chapter href="reusemap.ditamap#examplebranch" format="ditamap"/>
 <!-- additional content -->
</bookmap>

The referenced map contains that branch along with other content:

<map>
 <title>Reusable map branches</title>
 <topicref> <!-- ... --> </topicref>
 <topicref href="parent.dita" id="examplebranch">
 <topicref href="child1.dita"/>
 <topicref href="child2.dita">
 <!-- more children -->
 </topicref>
 </topicref>
 <!-- ... more reusable branches -->
</map>

Because the <chapter> element is defined with a fixed value of "impose" for the @impose-role
attribute, processors will impose the "chapter" role on the reference to parent.dita at the root of the
referenced branch. The "chapter" role is not imposed on the child topics in that branch. While processors
do not need to literally resolve the content in a normal map, the effective result is similar to this merged
map:

<bookmap>
 <!-- ... title, front matter, and other chapters -->
 <chapter href="parent.dita">
 <topicref href="child1.dita"/>
 <topicref href="child2.dita">
 <!-- more children -->
 </topicref>
 </chapter>
 <!-- additional content -->
</bookmap>

Imposing a role on a referenced map
In this scenario, a specialized <chapter> element refers to an entire submap. The chapter element does
not need to set the @impose-role attribute directly, because it is defined with a default value in the XML
grammar files. The element itself sets the @format attribute to indicate this is a map reference:

<bookmap>
 <!-- ... title, front matter, and other chapters -->
 <chapter href="nestedmap.ditamap" format="ditamap"/>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 55 of 471

 <!-- additional content -->
</bookmap>

The referenced map contains three branches as children of the root <map> element:

<map>
 <title>Reusable map branches</title>
 <topicref href="branch1.dita"> <!-- ... --> </topicref>
 <topicref href="branch2.dita">
 <topicref href="child1.dita"/>
 <topicref href="child2.dita">
 <!-- more children -->
 </topicref>
 </topicref>
 <topicref href="branch3.dita"> <!-- ... --> </topicref>
</map>

Because the <chapter> element is defined with a fixed value of "impose" for the @impose-role
attribute, processors will impose the "chapter" role on the highest-level references within the nested map.
This means the processors imposes the role of "chapter" on all three branches in the nested map. As with
the previous example, the "chapter" role is not imposed on the child topics in each branch. While
processors do not need to literally resolve the content in a normal map, the effective result is similar to
this merged map:

<bookmap>
 <!-- ... title, front matter, and other chapters -->
 <chapter href="branch1.dita"> <!-- ... --> </chapter>
 <chapter href="branch2.dita">
 <topicref href="child1.dita"/>
 <topicref href="child2.dita">
 <!-- more children -->
 </topicref>
 </chapter>
 <chapter href="branch3.dita"> <!-- ... --> </chapter>
 <!-- additional content -->
</bookmap>

5.1.1.1 Example: How <topicref> roles are imposed on referenced maps
In this scenario, a specialized <topicref> element references content in another map.

Consider the scenario of a <chapter> element from the Bookmap specialization that references a DITA
map. This scenario could take several forms:

Referenced map contains a single top-level <topicref> element
The entire branch functions as if it were included in the bookmap. The "chapter" role is imposed on
the branch, with the result that the top-level <topicref> element is processed as if it were the
<chapter> element.

Referenced map contains multiple top-level <topicref> elements
The "chapter" role is imposed on each top-level element in the referenced map. Each top-level
<topicref> element is processed as if it were a <chapter> element.

Referenced map contains a single <appendix> element
The "chapter" role is imposed on the <appendix> element, which is processed as it were a
<chapter> element.

Referenced map contains a single <part> element, with nested <chapter> elements
The "chapter" role is imposed on the <part> element, which is processed as it were a <chapter>
element. Nested <chapter> elements might not be understandable by processors, which can treat
this as an error or recover as they are able.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 56 of 471

<chapter> element references a single <topicref> element rather than a map
The "chapter" role is imposed on the referenced <topicref> element, which is processed as if it
were a <chapter> element.

5.1.2 Examples of DITA maps
This section of the specification contains simple examples of DITA maps. The examples illustrate a few of
the ways that DITA maps are used.

5.1.2.1 Example: DITA map that references a subordinate map
This example illustrates how one map can reference a subordinate map using either <mapref> or the
basic <topicref> element.

The following code sample illustrates how a DITA map can use the specialized <mapref> element to
reference another DITA map:

<map>
 <title>DITA work at OASIS</title>
 <topicref href="oasis-dita-technical-committees.dita">
 <topicref href="dita_technical_committee.dita"/>
 <topicref href="dita_adoption_technical_committee.dita"/>
 </topicref>
 <mapref href="oasis-processes.ditamap"/>
 <!-- ... -->
</map>

The <mapref> element is a specialized <topicref> intended to make it easier to reference another
map; use of <mapref> is not required for this task. This map also could be tagged in the following way:

<map>
 <title>DITA work at OASIS</title>
 <topicref href="oasis-dita-technical-committees.dita">
 <topicref href="dita_technical_committee.dita"/>
 <topicref href="dita_adoption_technical_committee.dita"/>
 </topicref>
<topicref href="oasis-processes.ditamap" format="ditamap"/>
<!-- ... -->
</map>

With either of the above examples, during processing, the map is resolved in the following way:

<map>
 <title>DITA work at OASIS</title>
 <topicref href="oasis-dita-technical-committees.dita">
 <topicref href="dita_technical_committee.dita"/>
 <topicref href="dita_adoption_technical_committee.dita"/>
 </topicref>
 <!-- Contents of the oasis-processes.ditamap file -->
 <topicref href="oasis-processes.dita">
 <!-- ... -->
 </topicref>
 <!-- ... -->
</map>

5.1.2.2 Example: DITA map with a simple relationship table
This example illustrates how to interpret a basic three-column relationship table used to maintain links
between concept, task, and reference material.

The following example contains the markup for a simple relationship table:

<map>
<!-- ... -->

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 57 of 471

<reltable>
 <relheader>
 <relcolspec type="concept"/>
 <relcolspec type="task"/>
 <relcolspec type="reference"/>
 </relheader>
 <relrow>
 <relcell>
 <topicref href="A.dita"/>
 </relcell>
 <relcell>
 <topicref href="B.dita"/>
 </relcell>
 <relcell>
 <topicref href="C1.dita"/>
 <topicref href="C2.dita"/>
 </relcell>
 </relrow>
</reltable>
</map>

A DITA-aware tool might represent the relationship table graphically:

type="concept" type="task" type="reference"

A B C1
C2

When the output is generated, the topics contain the following linkage:

A
Links to B, C1, and C2

B
Links to A, C1, and C2

C1, C2
Links to A and B

5.1.2.3 Example: How the @collection-type and @linking attributes determine
links
In this scenario, a simple map establishes basic hierarchical and relationship table links. The
@collection-type and @linking attributes are then added to modify how links are generated.

The following example illustrates how linkage is defined in a DITA map:

Figure 7: Simple linking example

<topicref href="A.dita" collection-type="sequence">
 <topicref href="A1.dita"/>
 <topicref href="A2.dita"/>
</topicref>
<reltable>
 <relrow>
 <relcell><topicref href="A.dita"/></relcell>
 <relcell><topicref href="B.dita"/></relcell>
 </relrow>
</reltable>

When the output is generated, the topics contain the following linkage. Sequential (next/previous) links
between A1 and A2 are present because of the @collection-type attribute on the parent:

A
Links to A1, A2 as children

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 58 of 471

Links to B as related

A1
Links to A as a parent
Links to A2 as next in the sequence

A2
Links to A as a parent
Links to A1 as previous in the sequence

B
Links to A as related

The following example illustrates how setting the @linking attribute can change the default behavior:

Figure 8: Linking example with the @linking attribute

<topicref href="A.dita" collection-type="sequence">
 <topicref href="B.dita" linking="none"/>
 <topicref href="A1.dita"/>
 <topicref href="A2.dita"/>
</topicref>
<reltable>
 <relrow>
 <relcell><topicref href="A.dita"/></relcell>
 <relcell linking="sourceonly"><topicref href="B.dita"/></relcell>
 </relrow>
</reltable>

When the output is generated, the topics contain the following linkage:

A
Links to A1, A2 as children
Does not link to B as a child or related topic

A1
Links to A as a parent
Links to A2 as next in the sequence
Does not link to B as previous in the sequence

A2
Links to A as a parent
Links to A1 as previous in the sequence

B
Links to A as a related topic

5.2 Subject scheme maps and their usage
Subject scheme maps can be used to define controlled values and subject definitions. The controlled
values can be bound to attributes, as well as element and attribute pairs. The subject definitions can
contain metadata and provide links to more detailed information; they can be used to classify content and
provide semantics that can be used in taxonomies and ontologies.

008 (384) A DITA map can reference a subject scheme map by using a <mapref> element.
Processors also MAY provide parameters by which subject scheme maps are
referenced.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 59 of 471

5.2.1 Subject scheme maps
Subject scheme maps use key definitions to define collections of controlled values and subject definitions.

Controlled values are tokens that can be used as values for attributes. For example, the @audience
attribute can take a value that identifies the users that are associated with a particular product. Typical
values for a medical-equipment product might include "therapist", "oncologist", "physicist", and
"radiologist". In a subject scheme map, an information architect can define a list of these values for the
@audience attribute. An authoring tool can then provide a pick list for values for the attribute and
generate a warning if an author attempts to specify a value that is not one of the controlled values.
Controlled values can also be used to select content for filtering and flagging at build time.

Subject definitions are classifications and sub-classifications that compose a tree. Subject definitions
provide semantics that can be used in conjunction with taxonomies and ontologies.

Key references to controlled values are resolved to a key definition using the same precedence rules as
apply to any other key. However, once a key is resolved to a controlled value, that key reference does not
typically result in links or generated text.

Comment by Kristen J Eberlein on 14 December 2021

Adding content from DITAweb review D:

Comment from Stan Doherty: FWIW -- I do not understand what the second sentence ["However, omce
a key is resolved ... "] means.

Comment from Kris Eberlein: Quite simply, that key references resolved within a subjectScheme map
do NOT generate variable text or produce links. Within the context of a subjectScheme map, the key
references provide bindings or associations with subjects.

Comment from Robert Anderson: I think the root of this problem / this misunderstanding is the poor
design choice of using the same keys/keyref attribute for Subject Schemes as we do for normal
linking / variable text. We had an item in the 2.0 queue to completely redesign that, but never had
anyone with the time / energy to work on it (it would have been a big change).

The problem here is that we have to explain "These don't work like normal keys, and you shouldn't use
them in links and expect them to resolve as text or links" -- in a way that is clear, accurate, and short
enough that it actually gets read. So, I think we need some work on this paragraph.

Disposition: Unassigned

5.2.2 Defining controlled values for attributes
Subject scheme maps can define controlled values for DITA attributes without having to define
specializations or constraints. The list of available values can be modified quickly to adapt to new
situations.

Each controlled value is defined using a <subjectdef> element, which is a specialization of the
<topicref> element. The <subjectdef> element is used to define both a subject category and a list
of controlled values. The parent <subjectdef> element defines the category, and the children
<subjectdef> elements define the controlled values.

The subject definitions can include additional information within a <topicmeta> element to clarify the
meaning of a value:

• A <navtitle> (or a <titlealt> element with a @title-role of navigation) can provide a
more readable name for the controlled value.

• The <shortdesc> element can provide a definition.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 60 of 471

In addition, the <subjectdef> element can reference a more detailed definition of the subject, for
example, another DITA topic or an external resource.

009 (385) The following behavior is expected of processors in regard to subject scheme
maps:

• Authoring tools SHOULD use these lists of controlled values to provide lists
from which authors can select values when they specify attribute values.

• Authoring tools MAY give an organization a list of readable labels, a
hierarchy of values to simplify selection, and a shared definition of the
value.

• Authoring tools MAY support accessing and displaying the content of the
subject definition resource in order to provide users with a detailed
explanation of the subject.

Example: Controlled values that provide additional information about the subject
The following code sample illustrates how a subject definition can provide a richer level of information
about a controlled value:

<subjectdef keys="terminology" href="https://www.oasis-open.org/policies-guidelines/keyword-
guidelines">
 <subjectdef keys="rfc2119" href="rfc-2119.dita">
 <topicmeta>
 <navtitle>RFC-2119 terminology</navtitle>
 <shortdesc>The normative terminology that the DITA TC uses for the DITA specification</
shortdesc>
 </topicmeta>
 </subjectdef>
 <subjectdef keys="iso" href="iso-terminology.dita">
 <topicmeta>
 <navtitle>ISO keywords</navtitle>
 <shortdesc>The normative terminology used by some other OASIS technical committees
 </shortdesc>
 </topicmeta>
 </subjectdef>
</subjectdef>

The content of the <navtitle> and <shortdesc> elements provide additional information that a
processor might display to users as they select attribute values or classify content. The resources
referenced by the @href attributes provide even more detailed information. A processor might render
expandable links as part of a user interface that implements a progressive disclosure strategy, or an
authoring tool might include the navigation title and short description in a window where the user selects a
controlled value.

5.2.3 Binding controlled values to an attribute
The controlled values defined in a subject scheme map can be bound to an attribute or an element and
attribute pair. This affects the expected behavior for processors and authoring tools.

The <enumerationdef> element binds the set of controlled values to an attribute. Valid attribute values
are those that are defined in the set of controlled values. Invalid attribute values are those that are not
defined in the set of controlled values. If an enumeration specifies an empty <subjectdef> element that
does not reference a set of controlled values, no value is valid for the attribute. An enumeration can also
specify an optional default value by using the <defaultSubject> element.

010 (385) If an enumeration is bound, processors SHOULD validate attribute values against
the controlled values that are defined in the subject scheme map. For authoring
tools, this validation prevents users from entering misspelled or undefined values.
Recovery from validation errors is implementation specific.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 61 of 471

The default attribute values that are specified in a subject scheme map apply only if a value is not
otherwise specified in the DITA source or as a default value by the XML grammar.

Example: Binding a list of controlled values to the @audience attribute
The following code sample illustrates the use of the <subjectdef> element to define controlled values
for types of users. It also binds the controlled values to the @audience attribute:

<subjectScheme>
 <!-- DEFINE TYPES OF USERS -->
 <subjectdef keys="users">
 <subjectdef keys="therapist"/>
 <subjectdef keys="oncologist"/>
 <subjectdef keys="physicist"/>
 <subjectdef keys="radiologist"/>
 </subjectdef>
 <!-- BIND THE SUBJECT TO THE @AUDIENCE ATTRIBUTE
 This restricts the @audience attribute to the following
 values: therapist, oncologist, physicist, radiologist -->
 <enumerationdef>
 <attributedef name="audience"/>
 <subjectdef keyref="users"/>
 </enumerationdef>
</subjectScheme>

When the above subject scheme map is used, the only valid values for the @audience attribute are
"therapist", "oncologist", "physicist", and "radiologist". Note that "users" is not a valid value for the
@audience attribute, as it merely identifies the parent or container subject.

Example: Binding an attribute to an empty set
The following code sample specifies that there are no valid values for the @outputclass attribute:

<subjectScheme>
 <enumerationdef>
 <attributedef name="outputclass"/>
 <subjectdef/>
 </enumerationdef>
</subjectScheme>

Authors will not be able to specify the @outputclass attribute on an element.

5.2.4 Processing controlled attribute values
An enumeration of controlled values can be defined with hierarchical levels by nesting subject definitions.
This affects how processors perform filtering and flagging.

011 (385) The following behavior is expected of processors in regard to subject scheme
maps:

• Processors SHOULD be aware of the hierarchies of attribute values that
are defined in subject scheme maps for purposes of filtering, flagging, or
other metadata-based categorization.

• Processors SHOULD validate that the values of attributes that are bound to
controlled values contain only valid values from those sets. This
requirement is needed because basic XML parsers do not validate the list of
controlled values. If the controlled values are part of a named key scope,
the scope name is ignored for the purpose of validating the controlled
values.

• Processors SHOULD check that all values listed for an attribute in a
DITAVAL file are bound to the attribute by the subject scheme before

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 62 of 471

filtering or flagging. If a processor encounters values that are not included in
the subject scheme, it SHOULD issue a warning.

012 (385) Processors SHOULD apply the following algorithm when they apply filtering and
flagging rules to attribute values that are defined as a hierarchy of controlled values
and bound to an enumeration:

1. If an attribute specifies a value in the taxonomy, and a DITAVAL or other
categorization tool is configured with that value, the rule matches.

2. Otherwise, if the parent value in the taxonomy has a rule, that matches.
3. Otherwise, continue up the chain in the taxonomy until a matching rule is

found.

Example: A hierarchy of controlled values and conditional processing
The following code sample shows a set of controlled values that contains a hierarchy.

<subjectScheme>
 <subjectdef keys="users">
 <subjectdef keys="therapist">
 <subjectdef keys="novice-therapist"/>
 <subjectdef keys="expert-therapist"/>
 </subjectdef>
 <subjectdef keys="oncologist"/>
 <subjectdef keys="physicist"/>
 <subjectdef keys="radiologist"/>
 </subjectdef>
 <enumerationdef>
 <attributedef name="audience"/>
 <subjectdef keyref="users"/>
 </enumerationdef>
</subjectScheme>

Processors that are aware of the hierarchy that is defined in the subject scheme map will handle filtering
and flagging in the following ways:

• If "therapist" is excluded, both "novice-therapist" and "expert-therapist" are by default excluded.
• If "therapist" is flagged and "novice-therapist" is not explicitly flagged, processors automatically

flag "novice-therapist" since it is a type of therapist.

5.2.5 The @subjectrefs attribute
The @subjectrefs attribute specifies one or more keys that are defined by a subject definition in a
subject scheme map. Multiple values are separated by white space.

The @subjectrefs attribute cascades. When specified on a topic reference, the @subjectrefs
attribute associates the referenced resource with subjects that are defined in subject scheme maps.

The DITA 2.0 specification does not indicate processing expectations for the @subjectrefs attribute.
The DITA Technical Committee expects to specify such expectations in the future.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 63 of 471

5.2.6 Examples of subject scheme maps
This section contains examples and scenarios that illustrate the use of subject scheme maps.

5.2.6.1 Example: a subject scheme map used to define taxonomic subjects
A subject scheme map can be used to define taxonomic subjects. Once defined, the subjects can be
referenced by specifying a @subjectrefs attribute on a <topicref> element.

The following subject scheme map defines a set of subjects that are used to classify content:

<subjectScheme>
 <subjectdef keys="content-types">
 <subjectdef keys="conceptual-material"/>
 <subjectdef keys="reference"/>
 <subjectdef keys="tutorial"/>
 </subjectdef>
 <subjectdef keys="operating-systems">
 <subjectdef keys="linux"/>
 <subjectdef keys="macosx"/>
 <subjectdef keys="windows"/>
 </subjectdef>
 <subjectdef keys="user-tasks">
 <subjectdef keys="administering"/>
 <subjectdef keys="developing"/>
 <subjectdef keys="installing"/>
 <subjectdef keys="troubleshooting"/>
 </subjectdef>
</subjectScheme>

The keys assigned to the subject definitions can be referenced by specifying the @subjectrefs attribute
on topic references in a navigation map:

<map>
<title>User assistance for the Acme Widget</title>
<!-- ... -->
<topicref keyref="install-overview" subjectrefs="installing">
 <topicref keyref="install-linux"/>
 <topicref keyref="install-macosx"/>
 <topicref keyref="install-windows"/>
 <topicref keyref="install-troubleshooting" subjectrefs="troubleshooting"/>
</topicref>
<!-- ... -->
</map>

Because the @subjectrefs attribute cascades, the effective value of the above markup is the same as
the following markup:

<map>
<title>User assistance for the Acme Widget</title>
<!-- ... -->
<topicref keyref="install-overview" subjectrefs="installing">
 <topicref keyref="install-linux" subjectrefs="installing"/>
 <topicref keyref="install-macosx" subjectrefs="installing"/>
 <topicref keyref="install-windows" subjectrefs="installing"/>
 <topicref keyref="install-troubleshooting" subjectrefs="installing troubleshooting"/>
</topicref>
<!-- ... -->
</map>

5.2.6.2 Example: How hierarchies defined in a subject scheme map affect filtering
This scenario demonstrates how a processor evaluates attribute values when it performs conditional
processing for an attribute that is bound to a set of controlled values.

A company defines a subject category for "Operating system", with a key set to "os". There are sub-
categories for Linux, Windows, and z/OS, as well as specific Linux variants: Red Hat Linux and SuSE

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 64 of 471

Linux. The company then binds the values that are enumerated in the "Operating system" category to the
@platform attribute:

<subjectScheme>
 <subjectdef keys="os">
 <topicmeta>
 <navtitle>Operating systems</navtitle>
 </topicmeta>
 <subjectdef keys="linux">
 <topicmeta>
 <navtitle>Linux</navtitle>
 </topicmeta>
 <subjectdef keys="redhat">
 <topicmeta>
 <navtitle>RedHat Linux</navtitle>
 </topicmeta>
 </subjectdef>
 <subjectdef keys="suse">
 <topicmeta>
 <navtitle>SuSE Linux</navtitle>
 </topicmeta>
 </subjectdef>
 </subjectdef>
 <subjectdef keys="windows">
 <topicmeta>
 <navtitle>Windows</navtitle>
 </topicmeta>
 </subjectdef>
 <subjectdef keys="zos">
 <topicmeta>
 <navtitle>z/OS</navtitle>
 </topicmeta>
 </subjectdef>
 </subjectdef>
 <enumerationdef>
 <attributedef name="platform"/>
 <subjectdef keyref="os"/>
 </enumerationdef>
</subjectScheme>

The enumeration limits valid values for the @platform attribute to the following: "linux", "redhat", "suse",
"windows", and "zos". If any other values are encountered, processors validating against the scheme will
issue a warning.

The following table illustrates how filtering and flagging operate when the above map is processed by a
processor. The first two columns provide the values specified in the DITAVAL file. The third and fourth
columns indicate the results of the filtering or flagging operation.

att="platform"
val="linux"

att="platform"
val="redhat"

How
platform="redhat" is
evaluated

How platform="linux"
is evaluated

action="exclude" action="exclude" Excluded. Excluded.

action="include" or
action="flag"

Excluded. This is an error
condition, because if all
"linux" content is excluded,
"redhat" also is excluded.
Applications can recover by
generating an error
message.

Excluded.

Unspecified Excluded, because "redhat"
is a kind of "linux", and
"linux" is excluded.

Excluded.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 65 of 471

att="platform"
val="linux"

att="platform"
val="redhat"

How
platform="redhat" is
evaluated

How platform="linux"
is evaluated

action="include" action="exclude" Excluded, because all
"redhat" content is
excluded.

Included.

action="include" Included. Included.

action="flag" Included and flagged with
the "redhat" flag.

Included.

Unspecified Included, because all
"linux" content is included.

Included.

action="flag" action="exclude" Excluded, because all
"redhat" content is
excluded.

Included and flagged with
the "linux" flag.

action="include" Included and flagged with
the "linux" flag, because
"linux" is flagged and
"redhat" is a type of "linux".

Included and flagged with
the "linux" flag.

action="flag" Included and flagged with
the "redhat" flag, because a
flag is available that is
specifically for "redhat".

Included and flagged with
the "linux" flag.

Unspecified Included and flagged with
the "linux" flag, because
"linux" is flagged and
"redhat" is a type of "linux"

Included and flagged with
the "linux" flag.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 66 of 471

att="platform"
val="linux"

att="platform"
val="redhat"

How
platform="redhat" is
evaluated

How platform="linux"
is evaluated

Unspecified action="exclude" Excluded, because all
"redhat" content is
excluded

If the default value for
@platform set in the
DITAVAL is "include", this
is included. If the default
value for @platform set
in the DITAVAL is
"exclude", this is excluded.

action="include" Included. Included, because all
"redhat" content is
included, and general
Linux content also applies
to RedHat

action="flag" Included and flagged with
the "redhat" flag.

Included, because all
"redhat" content is
included, and general
Linux content also applies
to RedHat

Unspecified If the default value for
@platform set in the
DITAVAL is "include", this is
included. If the default
value for @platform set in
the DITAVAL is "exclude",
this is excluded.

If the default value for
@platform set in the
DITAVAL is "include", this
is included. If the default
value for @platform set
in the DITAVAL is
"exclude", this is excluded.

5.2.6.3 Example: Defining values for @deliveryTarget
You can use a subject scheme map to define the values for the @deliveryTarget attribute. This
filtering attribute is intended for use with a set of hierarchical, controlled values.

In this scenario, one department produces electronic publications (EPUB, EPUB2, EPUB3, Kindle, etc.)
while another department produces traditional, print-focused output. Each department needs to exclude a
certain category of content when they build documentation deliverables.

The following subject scheme map provides a set of values for the @deliveryTarget attribute that
accommodates the needs of both departments.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE subjectScheme PUBLIC "-//OASIS//DTD DITA Subject Scheme Map//EN"
"subjectScheme.dtd">
<subjectScheme>
 <subjectHead>
 <subjectHeadMeta>
 <navtitle>Example of values for the @deliveryTarget attribute</navtitle>
 <shortdesc>Provides a set of values for use with the
 @deliveryTarget conditional-processing attribute. This set of values is
 illustrative only; you can use any values with the @deliveryTarget
 attribute.</shortdesc>
 </subjectHeadMeta>
 </subjectHead>
 <subjectdef keys="deliveryTargetValues">
 <topicmeta><navtitle>Values for @deliveryTarget attributes</navtitle></topicmeta>
 <!-- A tree of related values -->
 <subjectdef keys="print">
 <topicmeta><navtitle>Print-primary deliverables</navtitle></topicmeta>
 <subjectdef keys="pdf">

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 67 of 471

 <topicmeta><navtitle>PDF</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="css-print">
 <topicmeta><navtitle>CSS for print</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="xsl-fo">
 <topicmeta><navtitle>XSL-FO</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="afp">
 <topicmeta><navtitle>Advanced Function Printing</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="ms-word">
 <topicmeta><navtitle>Microsoft Word</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="indesign">
 <topicmeta><navtitle>Adobe InDesign</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="open-office">
 <topicmeta><navtitle>Open Office</navtitle></topicmeta>
 </subjectdef>
 </subjectdef>
 <subjectdef keys="online">
 <topicmeta><navtitle>Online deliverables</navtitle></topicmeta>
 <subjectdef keys="html-based">
 <topicmeta><navtitle>HTML-based deliverables</navtitle></topicmeta>
 <subjectdef keys="html">
 <topicmeta><navtitle>HTML</navtitle></topicmeta>
 <subjectdef keys="html5">
 <topicmeta><navtitle>HTML5</navtitle></topicmeta>
 </subjectdef>
 </subjectdef>
 <subjectdef keys="help">
 <topicmeta><navtitle>Contextual help</navtitle></topicmeta>
 <subjectdef keys="htmlhelp">
 <topicmeta><navtitle>HTML Help</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="webhelp">
 <topicmeta><navtitle>Web help</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="javahelp">
 <topicmeta><navtitle>Java Help</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="eclipseinfocenter">
 <topicmeta><navtitle>Eclipse InfoCenter</navtitle></topicmeta>
 </subjectdef>
 </subjectdef>
 <subjectdef keys="epub">
 <topicmeta><navtitle>EPUB</navtitle></topicmeta>
 <subjectdef keys="epub2">
 <topicmeta><navtitle>EPUB2</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="epub3">
 <topicmeta><navtitle>EPUB3</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="ibooks">
 <topicmeta><navtitle>iBooks</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="nook">
 <topicmeta><navtitle>nook</navtitle></topicmeta>
 </subjectdef>
 </subjectdef>
 <subjectdef keys="kindle">
 <topicmeta><navtitle>Amazon Kindle</navtitle></topicmeta>
 <subjectdef keys="kindle8">
 <topicmeta><navtitle>Kindle Version 8</navtitle></topicmeta>
 </subjectdef>
 </subjectdef>
 </subjectdef>
 </subjectdef>
 </subjectdef>
 <enumerationdef>
 <attributedef name="deliveryTarget"/>
 <subjectdef keyref="deliveryTargetValues"/>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 68 of 471

 </enumerationdef>
</subjectScheme>

5.3 Metadata cascading
Metadata cascading is the process by which metadata elements and attributes specified for a map or for
a topic reference cascade to nested references. This allows metadata properties to be set once and apply
to an entire map or branch of a map.

5.3.1 Cascading of metadata attributes in a DITA map
Certain attributes cascade throughout a map, which facilitates attribute and metadata management.
When attributes cascade, they apply to the elements that are children of the element where the attributes
were specified. Cascading applies to a containment hierarchy, as opposed to a specialization hierarchy.

The following attributes cascade when set on the <map> element or when set within a map:

• @rev
• @props and any attribute specialized from @props, including those integrated by default in the

OASIS-provided document-type shells: @audience, @deliveryTarget, @platform,
@product, @otherprops

• @linking, @toc, @search
• @format, @scope, @type
• @xml:lang, @dir, @translate
• @processing-role
• @cascade
• @subjectrefs

Cascading is additive for attributes that accept multiple values, except when cascade="nomerge" is
specified. For attributes that take a single value, the value that is defined on the closest containing
element takes effect.

In a relationship table, metadata can be applied to entire rows or columns, as well as individual cells. The
metadata cascade operates differently due to the nature of this tabular structure The cascade is not
driven by a strict containment hierarchy because <relcolspec> elements do not contain child elements.

The following list illustrates how metadata cascades in a relationship table:

• <reltable>
– <relcolspec>

• <relrow>
• <relcell>

• <topicref>
Related reference
topicmeta (272)

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 69 of 471

Topic metadata is metadata that applies to a topic based on its context in a map.

5.3.1.1 Processing cascading attributes in a map
Certain rules apply to processors when they process cascading attributes in a map.

013 (385) When determining the value of an attribute, processors MUST evaluate each
attribute on each individual element in a specific order. This order is specified in the
following list. Applications MUST continue through the list until a value is
established or until the end of the list is reached, at which point no value is
established for the attribute. In essence, the list provides instructions on how
processors can construct a map where all attribute values are set and all cascading
is complete.

014 (385) For attributes within a map, the following processing order MUST occur:

1. The @conref and @keyref attributes are evaluated.
2. The explicit values specified in the document instance are evaluated. For

example, a <topicref> element with the @toc attribute set to "no" will
use that value.

3. The default or fixed attribute values are evaluated. For example, the @toc
attribute on the <reltable> element has a default value of "no".

4. The default values that are supplied by a controlled values file are
evaluated.

5. The attributes cascade.
6. The processing-supplied default values are applied.
7. After the attributes are resolved within the map, any values that do not

come from processing-supplied defaults will cascade to referenced maps.

For example, most processors will supply a default value of toc="yes"
when no @toc attribute is specified. However, a processor-supplied default
of toc="yes" does not override a value of toc="no" that is set on a
referenced map. If the toc="yes" value is explicitly specified, is given as a
default through a DTD, RNG, or controlled values file, or cascades from a
containing element in the map, it will override a toc="no" setting on the
referenced map. See 5.3.3 Map-to-map cascading behaviors (73) for
more details.

8. Repeat steps 1 (70) to 4 (70) for each referenced map.
9. The attributes cascade within each referenced map.
10.The processing-supplied default values are applied within each referenced

map.
11.Repeat the process for maps referenced within the referenced maps.

For example, in the case of <topicref toc="yes">, applications must stop at item 2 (70) in the list; a
value is specified for @toc in the document instance, so @toc values from containing elements will not
cascade to that specific <topicref> element. The toc="yes" setting on that <topicref> element
will cascade to contained elements, provided those elements reach item 5 (70) when evaluating the @toc
attribute.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 70 of 471

5.3.1.2 Merging of cascading attributes
The @cascade attribute can be used to modify the additive nature of attribute cascading, although it does
not turn off cascading altogether. The attribute has two predefined values: "merge" and "nomerge".

merge
Indicates that the metadata attributes cascade, and that the values of the metadata attributes are
additive. This is the processing default for the @cascade attribute.

nomerge
Indicates that the metadata attributes cascade, but that they are not additive for <topicref>
elements that specify a different value for a specific metadata attribute. If the cascading value for an
attribute is already merged based on multiple ancestor elements, that merged value continues to
cascade until a new value is encountered. That is, setting cascade="nomerge" does not undo
merging that took place on ancestor elements.

015 (386) If no value is set for the @merge attribute and no value cascades from a containing
element, processors SHOULD assume a default of "merge".

016 (386) Implementers MAY define their own custom, implementation-specific tokens for the
@merge attribute. To avoid name conflicts between implementations or with future
additions to the standard, implementation-specific tokens SHOULD consist of a
prefix that gives the name or an abbreviation for the implementation followed by a
colon followed by the token or method name. For example, a processor might
define the token "appToken:audience" in order to specify cascading and merging
behaviors for only the @audience attribute.

017 (386) The predefined values for the @cascade attribute MUST precede any
implementation-specific tokens, for example, cascade="merge
appToken:audience".

5.3.2 Reconciling topic and map metadata elements
The <topicmeta> element in maps can contain numerous metadata elements. These metadata
elements can have an effect on the parent <topicref> element, any child <topicref> elements, and
– if a direct child of the <map> element – on the .

For each element that can be contained in the <topicmeta> element, the following table addresses the
following questions:

How does it apply to the topic?
This column describes how the metadata specified within the <topicmeta> element interacts with
the metadata specified in the referenced topic. In most cases, the properties are additive. For
example, when a topic reference in a map contains <category>installation</category>,
<category>installation</category> is added during processing to any metadata that is
specified in the topic prolog.

Does it cascade to other topics in the map?
This column indicates whether the specified metadata element cascades to nested <topicref>
elements. For example, when a topic reference in a map contains <author>Jane Doe</author>,
<author>Jane Doe</author> is added during processing to the metadata for all child topic
references. Some elements do not cascade.

What is the purpose when specified on the <map> element?
The map element permits metadata to be specified for the map. This column describes the effect that
an element has when specified at this level.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 71 of 471

When set on the <map> element, does it apply to all topics referenced in the map?
When specified on the <map> element element, some metadata elements then apply to all the topics
that are referenced in the map.

Table 1: <topicmeta> elements and their properties

Element
How does it apply
to the topic?

Does it cascade to
child <topicref>
elements?

What is the purpose
when set on the
<map> element?

When set on the
<map> element,
does it apply to all
topics referenced in
the map?

<audience> Add to the topic Yes Specify an audience
for the map

Yes

<author> Add to the topic Yes Specify an author for
the map

Yes

<category> Add to the topic Yes Specify a category
for the map

Yes

<copyright> Add to the topic Yes Specify a copyright
for the map

Yes

<critdates> Add to the topic Yes Specify critical dates
for the map

Yes

<data> Add to the topic No, unless
specialized for a
purpose that
cascades

No stated purpose No

<foreign> Add to the topic No, unless
specialized for a
purpose that
cascades

No stated purpose No

<keytext> Not added to the
topic

No No stated purpose No

<keywords> Add to the topic No No stated purpose No

<metadata> Add to the topic Yes Specify metadata for
the map

Yes

<othermeta> Add to the topic No Define metadata for
the map

Yes

<permissions> Add to the topic Yes Specify permissions
for the map

Yes

<prodinfo> Add to the topic Yes Specify product info
for the map

Yes

<publisher> Add to the topic Yes Specify a publisher
for the map

No

<resourceid> Add to the topic No Specify a resource ID
for the map itself

No

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 72 of 471

Element
How does it apply
to the topic?

Does it cascade to
child <topicref>
elements?

What is the purpose
when set on the
<map> element?

When set on the
<map> element,
does it apply to all
topics referenced in
the map?

<shortdesc> Applies only to links
created based on this
occurrence in the
map

No Provide a description
of the map

No

<source> Add to the topic No Specify a source for
the map

No

<titlealt> Add to the topic
before its
<titlealt>
elements

No Specify an alternative
title for the map

No

<ux-window> Not added to the
topic

No Definitions are global,
so setting at map
level is equivalent to
setting anywhere
else.

No

Related reference
topicmeta (272)
Topic metadata is metadata that applies to a topic based on its context in a map.

5.3.3 Map-to-map cascading behaviors
When a DITA map or map branch is referenced by another DITA map, by default certain rules apply.
These rules pertain to the cascading behaviors of attributes, metadata elements, and the roles that are
assigned to content , for example, the role of "Chapter" that is assigned by a <chapter> element.
Attributes and elements that cascade within a map generally follow the same rules when cascading from
one map to another map, but there are some exceptions and additional rules that apply.

5.3.3.1 Cascading of attributes from map to map
Certain attributes cascade from map to map.

The following attributes cascade from map to map:

• @rev
• @props and any attribute specialized from @props, including those integrated by default in the

OASIS-provided document-type shells: @audience, @deliveryTarget, @platform,
@product, @otherprops

• @linking, @toc, @search
• @type
• @translate
• @processing-role
• @cascade
• @subjectrefs

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 73 of 471

As with values that cascade within a map, the cascading is additive if the attribute permits multiple values,
such as @audience. For attributes that take a single value, the value that is defined on the closest
containing element takes effect.

The following attributes do not cascade from map to map

@format
The @format attribute is set to "ditamap" when a map or map branch is referenced, so it cannot
cascade through to the referenced map.

@scope
The value of the @scope attribute describes the map itself, rather than the content. For example,
when the @scope attribute is set to "external", it indicates that the referenced map itself is external
and unavailable, so the value cannot cascade into that referenced map.

@xml:lang and @dir
Cascading behavior for @xml:lang is defined in 4.2.1 The xml:lang attribute (47). The @dir
attribute follows the same rules as @xml:lang.

While the @class attribute is unique and does not cascade, the value of the attribute is used to
determine the processing roles that cascade from map to map. See Cascading of roles from map to map
for more information.

5.3.3.2 Cascading of metadata elements from map to map
Elements that are contained within <topicmeta> elements follow the same rules for cascading from
map to map as the rules that apply within a single DITA map.

For a complete list of which elements cascade within a map, see the column "Does it cascade to child
<topicref> elements?" in the topic 5.3.2 Reconciling topic and map metadata elements (71).

Note It is possible that a specialization might define metadata that is intended to replace rather than
add to metadata in the referenced map, but DITA, by default, does not have a mechanism to
specify this behavior.

5.3.4 Examples of metadata cascading
These examples illustrate the processing expectations for cascading metadata. The processing examples
use either before and after sample markup or expanded syntax that shows the equivalent markup
withough cascading.

5.3.4.1 Example: How map-level metadata elements cascade to the referenced
topics
In this scenario, elements located in the<topicmeta> element for a map cascade to the referenced
topics.

The following code sample illustrates how an information architect can apply certain metadata to all the
DITA topics in a map:

<map xml:lang="en-us">
 <title>DITA maps</title>
 <topicmeta>
 <author>Kristen James Eberlein</author>
 <copyright>
 <copyryear year="2020"/>
 <copyrholder>OASIS</copyrholder>
 </copyright>
 </topicmeta>
 <topicref href="dita-maps.dita">
 <topicref href="definition_ditamaps.dita"/>
 <topicref href="purpose_ditamaps.dita"/>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 74 of 471

 <!-- ... -->
 </topicref>
</map>

The author and copyright information cascades to each of the DITA topics that are referenced in the DITA
map. When the DITA map is processed to HTML5, for example, the author and copyright metadata apply
to each generated HTML5 file.

5.3.4.2 Example: How metadata elements cascade from one map to another
In this scenario, a metadata element that is located in a map reference cascades to the topics that are
referenced in a nested map.

Assume the following references in test.ditamap:

<map>
 <topicref href="a.ditamap" format="ditamap" toc="no"/>
 <mapref href="b.ditamap" audience="developer"/>
 <mapref href="c.ditamap#branch2" platform="myPlatform"/>
 <mapref href="d.ditamap" subjectrefs="puzzles"/>
</map>

• The map a.ditamap is treated as if toc="no" is specified on the root <map> element. This
means that the topics that are referenced by a.ditamap do not appear in the navigation
generated by test.ditamap, except for branches within the map that explicitly set toc="yes".

• The map b.ditamap is treated as if audience="developer" is set on the root <map>
element. If the @audience attribute is already set on the root <map> element within b.ditamap,
the value "developer" is added to any existing values.

• The element with id="branch2" within the map c.ditamap is treated as if
platform="myPlatform" is specified on that element. If the @platform attribute is already
specified on the element with id="branch", the value"myPlatform" is added to existing values.

• The map d.ditamap is treated as if subjectrefs="puzzles" is set on the root <map>
element. If the @subjectrefs attribute is already set on the root <map> element within
d.ditamap, the value "puzzles" is added to any existing values.

5.3.4.3 Example: How attributes cascade from one map to another
In this scenario, attributes in one map cascade to a nested map.

Assume the following references in test.ditamap:

<map>
 <topicref href="a.ditamap" format="ditamap" toc="no"/>
 <mapref href="b.ditamap" audience="developer"/>
 <mapref href="c.ditamap#branch2" platform="myPlatform"/>
</map>

• The map a.ditamap is treated as if toc="no" is specified on the root <map> element. This
means that the topics that are referenced by a.ditamap do not appear in the navigation
generated by test.ditamap, except for branches within the map that explicitly set toc="yes".

• The map b.ditamap is treated as if audience="developer" is set on the root <map>
element. If the @audience attribute is already set on the root <map> element within b.ditamap,
the value "developer" is added to any existing values.

• The element with id="branch2" within the map c.ditamap is treated as if
platform="myPlatform" is specified on that element. If the @platform attribute is already
specified on the element with id="branch", the value"myPlatform" is added to existing values.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 75 of 471

5.3.4.4 Example: How the @cascade attribute affects attribute cascading
In this scenario, the @cascade attribute is used to modify how metadata attributes cascade within a map.

Figure 9: Example of cascade="merge"

Consider the following code example:

<map audience="a b" cascade="merge">
 <topicref href="topic.dita" audience="c"/>
</map>

In this map, the cascade="merge" attribute instructs a processor to merge attribute values while
cascading. With @audience specified on both the <map> element and the <topicref> element, the
effective @audience attribute value for the reference to topic.dita is "a b c".

Figure 10: Example of cascade="nomerge"

Consider the following code example:

<map audience="a b" cascade="nomerge">
 <topicref href="topic.dita" audience="c"/>
</map>

In this map, the cascade="nomerge" attribute instructs a processor not to merge attribute values while
cascading. With @audience specified on both the <map> element and the <topicref> element, the
effective @audience attribute value on the reference to topic.dita is not merged with the value from
the map and remains "c".

Figure 11: Example of changing the @cascade value within the map

Consider the following code example:

<map platform="a" product="x" cascade="merge">
 <topicref href="one.dita" platform="b" product="y">
 <topicref href="two.dita">
 <topicref href="three.dita" cascade="nomerge" product="z">
 <topicref href="four.dita"/>
 </topicref>
 </topicref>
 </topicref>
</map>

In this map, the @cascade attribute is set to "merge" at the map level but changes to "nomerge" on a
topic reference.

• For the topic reference to one.dita, cascade="merge" is specified. This results in an effective
@platform value of "a b" and an effective @product value of "x y".

• The topic reference to two.dita does not specify any additional attributes. The effective values
for the @platform and @product attributes are the same as those on the parent topic reference
to one.dita. The effective value of of the @platform attribute is "a b", and the effective value
for the @product attribute is "x y".

• The topic reference to three.dita specifies cascade="nomerge", so attribute values from
other elements do not merge with anything specified on the topic reference. The @platform
attribute is not specified, so the effective value is "a b", which still cascades from the parent
element. The @product value does not merge with values from the parent, so the effective value
is "z".

• The topic reference to four.dita does not specify any additional attributes. The effective values
for the @platform and @product attributes are the same as those on the parent topic reference

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 76 of 471

to three.dita. The effective value of of the @platform attribute is "a b", and the effective
value for the @product attribute is "z".

5.4 Chunking
Content often needs to be delivered in a different granularity than it is authored. The @chunk attribute
enables map authors to specify that multiple source documents should be combined into a single
document for delivery or that a single source document should be split into multiple documents for
delivery.

5.4.1 About the @chunk attribute
The @chunk attribute specifies how a processor should split or combine source DITA documents into
alternate organizational schemes for rendering purposes. This means that the @chunk attribute is only
relevant when the organization of source DITA documents has an effect on the organization of published
documents.

The @chunk attribute only operates on topics and nested topics. It does not operate on other topic
content, such as sections.

The @chunk attribute is composed of a single token without any white space. DITA defines the following
tokens for the @chunk attribute:

combine
Instructs a processor to combine the referenced source documents for rendering purposes. This is
intended for cases where a publishing process normally results in a single output artifact for each
source XML document.

split
Instructs a processor to split each topic from the referenced source document into its own document
for rendering purposes. This is intended for cases where a publishing process normally results in a
single output artifact for each source XML document, regardless of how many DITA topics exist
within each source document.

Applications can use custom tokens for the @chunk attribute.

The @chunk attribute does not cascade.

018 (386) The following rules apply to all values of the @chunk attribute:

• When the source document organization has no effect on published output,
such as when producing a single PDF or EPUB, processors MAY ignore the
@chunk attribute.

• When the @chunk attribute results in more or fewer documents based on
the combine or split tokens, the hierarchy of topics within the resulting
map and topic organization SHOULD match the hierarchy in the original
topics and maps.

• When the @chunk attribute results in more or fewer documents, processors
MAY create their own naming schemes for those reorganized documents.

• The @chunk attribute values apply to DITA topic documents referenced
from a map. Processors MAY apply equivalent processing to non-DITA
documents.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 77 of 471

5.4.2 Processing chunk="combine"
The presence of chunk="combine" instructs a processor to combine the referenced source documents
for rendering purposes.

The following rules apply:

• When chunk="combine" is specified on the root element of a map, all source DITA documents
that are referenced by the map are treated as one DITA document.

• When chunk="combine" is specified on a branch of a map, all source DITA documents that are
referenced within that branch are treated as one DITA document.

Note This is true regardless of whether the element that specifies @chunk refers to a topic
or specifies a heading. In cases such as <topicgroup> where a grouping element
specifies chunk="combine", the equivalent DITA document would be a single DITA
document with a root element that groups peer topics.

• When chunk="combine" is specified on a map, map branch, or map reference, all source DITA
documents that are grouped by the reference are treated as a single resource. Any additional
@chunk attributes on elements within the grouping are ignored.

Comment by Kristen J Eberlein on 04 February 2022

What's the difference between the content of li[3] and [li4]?

Disposition: Unassigned

5.4.3 Processing chunk="split"
The presence of chunk="split" instructs a processor to split each topic from the referenced source
document into its own document for rendering purposes.

The following rules apply:

• When chunk="split" is specified on the root element of a map, it sets a default operation for
all source DITA documents in the navigation structure of the map. The default split value is
used except where a combine value is encountered, in which case combine takes over for that
entire branch.

• When chunk="split" is specified on a <topicref> element that references a source DITA
document, it indicates that all topics within the referenced document should be rendered as
individual documents.

• When chunk="split" is specified on an element such as <topicgroup> that does not
reference a source DITA document or result in published output, the attribute has no meaning.

5.4.4 Using the @chunk attribute for other purposes
Applications can define additional tokens for use in the @chunk attribute. These tokens are
implementation dependent and might not be supported by other applications.

5.4.5 Examples of the @chunk attribute
These examples illustrate the processing expectations for various scenarios that involve the @chunk
attribute. The processing examples use either before and after sample markup or expanded syntax that
shows the equivalent markup without the @chunk attribute.

Note The examples use sample files with modified file names to help illustrate the equivalent before
and after resolution of @chunk attributes. However, there is no requirement for
implementations processing the @chunk attribute to generate files, as long as the rendered

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 78 of 471

result is split or combined as described. If generating files, the file names are implementation
dependent.

5.4.5.1 Example: Using @chunk to combine all documents into one
When a processor would typically render each topic document as an independent result document, the
@chunk attribute can be used to render all content as a single result document.

Figure 12: Root map and the topics that it references

Consider the following DITA map:

<map>
 <title>Lesson plan</title>
 <topicref href="background.dita">
 <!-- More topic references to background topics -->
 </topicref>
 <topicref href="goals.dita">
 <!-- More topic references to goal topics -->
 </topicref>
 <!-- More topic references -->
</map>

The following code samples show the content of background.dita and goals.dita:

<!-- Content of background.dita -->
<topic id="background">
 <title>Prerequisite concepts</title>
 <shortdesc>This information is necessary before starting ...</shortdesc>
 <body> <!-- ... --> </body>
</topic>

<!-- Content of goals.dita -->
<topic id="goals">
 <title>Lesson goals</title>
 <shortdesc>After you complete the lesson ...</shortdesc>
 <body> <!-- ... --> </body>
</topic>

For many systems or output formats, each document in the map is typically rendered as an independent
document. For example, rendering this map as HTML5 might result in background.html and
goals.html, in addition to other HTML5 files.

Figure 13: Root map with chunking specified

If the output requirements demand only a single result document, specifying chunk="combine" on the
root map element instructs a processor to render a single document that combines all topics:

<map chunk="combine">
 <title>Lesson plan</title>
 <topicref href="background.dita">
 <!-- More topic references to background topics -->
 </topicref>
 <topicref href="goals.dita">
 <!-- More topic references to goal topics -->
 </topicref>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 79 of 471

 <!-- More topic references -->
</map>

Figure 14: Equivalent content of source documents after evaluation

The result of evaluating the @chunk attribute is equivalent to the following map and topic documents:

<!-- Root map -->
<map>
 <title>Lesson plan</title>
 <topicref href="combinedTopics.dita"/>
</map>

<dita>
 <!-- original content of background.dita -->
 <topic id="background">
 <title>Prerequisite concepts</title>
 <shortdesc>This information is necessary before starting</shortdesc>
 <body> <!-- ... --> </body>
 <!-- More background topics -->
 </topic>
 <!-- original content of goals.dita -->
 <topic id="goals">
 <title>Lesson goals</title>
 <shortdesc>After you complete the lesson ...</shortdesc>
 <body> <!-- ... --> </body>
 <!-- More goal topics -->
 </topic>
 <!-- More topics -->
</dita>

The content from all topics within the map is combined into a single result document, with a topic order
and topic nesting structure that matches the original map hierarchy:

5.4.5.2 Example: Using @chunk to render a single document from one or more
branches
When a publishing system typically would render each topic document as an independent result
document, the @chunk attribute can be used to render individual branches of a map as single documents.

Figure 15: Root map and the topics that it references

Consider the following DITA map:

<map>
 <title>Lesson plan</title>
 <topicref href="goals.dita">
 <!-- More topic references to goal topics -->
 </topicref>
 <topicref href="firstLesson.dita">
 <!-- More topic references to first lesson topics -->
 </topicref>
 <topicref href="nextLesson.dita">
 <!-- More topic references to second lesson topics -->
 </topicref>
 <!-- More map branches -->
</map>

The following code samples show the content of firstLesson.dita and nextLesson.dita:

<!-- firstLesson.dita -->
<task id="firstLesson">
 <title>Starting to work with scissors</title>
 <shortdesc>This lesson will teach ... </shortdesc>
 <taskbody>
 <!-- ... -->

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 80 of 471

 </taskbody>
</task>

<!-- nextLesson.dita -->
<task id="nextLesson">
 <title>Advanced cutting</title>
 <shortdesc>This lesson will introduce complex shapes ... </shortdesc>
 <taskbody>
 <!-- ... -->
 </taskbody>
</task>

For many systems or output formats, each document in the map is typicallyrendered as an independent
document. For example, rendering this map as HTML5 might result in goals.html,
firstLesson.html, and nextLesson.html, while the child documents within each branch would
each result in their own HTML files.

Figure 16: Root map with chunking specified for certain branches

When output requirements demand that portions of the map be combined into a single document,
specifying chunk="combine" on a map branch instructs a processor to render one document that
combines all topics in that branch.

In the following code sample, chunk="combine" is specified on the map branches for the lessons. This
indicates that each lesson branch should rendered as a single result document. Topics in the first branch
with goals.dita will not be affected.

<map>
 <title>Lesson plan</title>
 <topicref href="goals.dita">
 <!-- More topic references to goal topics -->
 </topicref>
 <topicref href="firstLesson.dita" chunk="combine">
 <!-- More topic references to first lesson topics -->
 </topicref>
 <topicref href="nextLesson.dita">
 <!-- More topic references to second lesson topics -->
 </topicref>
 <!-- More map branches -->
</map>

Figure 17: Equivalent content of source documents after evaluation

The result of evaluating this @chunk attribute is equivalent to the following map and topic documents:

<!-- Root map -->
<map>
 <title>Lesson plan</title>
 <topicref href="goals.dita">
 <!-- More topic references to goal topics -->
 </topicref>
 <topicref href="firstLesson.dita"/>
 <topicref href="nextLesson.dita"/>
 <!-- More map branches -->
</map>

<!-- firstLesson.dita -->
<task id="firstLesson">
 <title>Starting to work with scissors</title>
 <shortdesc>This lesson will teach ... </shortdesc>
 <taskbody>
 <!-- ... -->
 </taskbody>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 81 of 471

 <!-- More first lesson topics -->
</task>

<!-- nextLesson.dita -->
<task id="nextLesson">
 <title>Advanced cutting</title>
 <shortdesc>This lesson will introduce complex shapes...</shortdesc>
 <taskbody>
 <!-- ... -->
 </taskbody>
 <!-- More second lesson topics -->
</task>

Content from each branch where @chunk attribute is specified is combined into a single result document,
with a topic order and topic nesting structure that matches the original map hierarchy. Content from
outside of those branches remains unchanged.

5.4.5.3 Example: Using @chunk to combine groups of topics
The @chunk attribute can be used on grouping elements to combine multiple source documents into one
result document.

Figure 18: Root map with @chunk specified on grouping elements

Consider the following DITA map, where @chunk is specified on both <topicgroup> and
<topichead> elements:

<map>
 <title>Groups are combined</title>
 <topicgroup chunk="combine">
 <topicref href="ingroup1.dita"/>
 <topicref href="ingroup2.dita"/>
 </topicgroup>
 <topichead chunk="combine">
 <topicmeta>
 <navtitle>Heading for a branch</navtitle>
 </topicmeta>
 <topicref href="inhead1.dita"/>
 <topicref href="inhead2.dita"/>
 </topichead>
</map>

The result of evaluating the @chunk attribute on the <topicgroup> element is equivalent to a single
DITA document that contains the content of both ingroup1.dita and ingroup2.dita.

The result of evaluating the @chunk attribute on <topichead> is also a single result document. In many
applications, a <topichead> is equivalent to a single title-only topic. In that case, the chunked result is
equivalent to a root topic with the title "Heading for a branch", that contains as child topics the content of
both inhead1.dita and inhead2.dita. If <topichead> is ignorable in the current processing
context, the chunked result would be equivalent to processing <topicgroup>: a single DITA document
with the content of both inhead1.dita and inhead2.dita.

Figure 19: Equivalent content of source documents after evaluation

The result of evaluating the @chunk attribute is equivalent to the following map and topic documents:

<map>
 <title>Groups are combined</title>
 <topicref href="chunkgroup-1.dita"/>
 <topicref href="chunkgroup-2.dita"/>
</map>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 82 of 471

The following code blocks show the content of chunkgroup-1.dita and chunkgroup-2.dita:

<!-- chunkgroup-1.dita -->
<dita>
 <!-- Content of ingroup1.dita -->
 <!-- Content of ingroup2.dita -->
</dita>

<!-- chunkgroup-2.dita -->
<dita>
 <topic id="head">
 <title>Heading for a branch</title>
 <!-- Content of inhead1.dita -->
 <!-- Content of inhead2.dita -->
 </topic>
</dita>

5.4.5.4 Example: How chunk="combine" effects the map hierarchy
Special attention is necessary when combining a nested map hierarchy that includes documents with
their own nested topics.

Figure 20: Source DITA map

Consider the following DITA map:

<map chunk="combine">
 <title>Generation example</title>
 <topicref href="ancestor.dita">
 <topicref href="middle.dita">
 <topicref href="child.dita"/>
 </topicref>
 </topicref>
</map>

In this case, the @chunk attribute instructs a processor to treat the three topics as a single combined
document, while preserving the original map hierarchy.

Figure 21: Source documents with nested structures

Now consider the following three source documents, each of which includes nested or peer topics:
ancestor.dita, middle.dita, and child.dita.

<!-- ancestor.dita -->
<dita>
 <topic id="ancestor-first">
 <title>First major topic in ancestor composite document</title>
 <!-- ... Topic content ... -->
 </topic>
 <!-- More topics in ancestor composite document -->
 <topic id="ancestor-last">
 <title>Last major topic in ancestor composite doc</title>
 <!-- ... Topic content ... -->
 <topic id="ancestor-last-child">
 <title>Child of last major topic in ancestor composite document</title>
 <!-- ... Topic content ... -->
 </topic>
 </topic>
</dita>

<!-- middle.dita -->
<topic id="middle-root">
 <title>Root topic in middle document</title>
 <body>
 <!-- ... -->
 </body>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 83 of 471

 <topic id="middle-child">
 <title>Child of root topic in middle document</title>
 <!-- ... Body content, maybe more children topics -->
 </topic>
</topic>

<!-- child.dita -->
<topic id="child">
 <title>Small child topic</title>
 <!-- ... Topic content ... -->
</topic>

Figure 22: Evaluating chunk="combine"

When chunk="combine" is evaluated, the three source documents are combined into one. Both the
ancestor and middle documents have child topics that need to be taken into account:

• ancestor.dita has a root <dita> element, with several root-level topics. After evaluating the
@chunk attribute, content from middle.dita is placed after the topic with id="ancestor-
last-child"in ancestor.dita.

• middle.dita does not have a <dita> element, but it does have a nested topic, so content from
child.dita is located after that nested topic.

In each case, the original map hierarchy is preserved.

Figure 23: Equivalent content of source documents after evaluation

The result of evaluating the @chunk attribute is equivalent to the following map and topic documents:

<!-- Root map -->
<map>
 <title>Generation example</title>
 <topicref href="input.dita"/>
</map>

<!-- input.dita -->
<dita>
 <topic id="ancestor-first">
 <title>First major topic in ancestor composite doc</title>
 <!-- ... Topic content ... -->
 </topic>
 <!-- More topics in ancestor composite doc -->
 <topic id="ancestor-last">
 <title>Last major topic in ancestor composite doc</title>
 <!-- ... Topic content ... -->
 <topic id="ancestor-last-child">
 <title>Child of last major topic in ancestor composite doc</title>
 <!-- ... Topic content ... -->
 </topic>
 <!-- Content of middle.dita combined here -->
 <topic id="middle-root">
 <title>Root topic in middle doc</title>
 <body><!-- ... --></body>
 <topic id="middle-child">
 <title>Child of root topic in middle doc</title>
 <!-- ... Body content, maybe more children topics ... -->
 </topic>
 <!-- Content of child.dita combined here -->
 <topic id="child">
 <title>Small child topic</title>
 <!-- ... Topic content ... -->
 </topic>
 </topic>
 </topic>
</dita>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 84 of 471

5.4.5.5 Example: Using @chunk to split documents
When topics are authored or generated in a single DITA document, specifying chunk="split" instructs
processors to render them individually when possible.

This topic contains two examples: Splitting a single topic document and splitting all topic documents.

Splitting a single topic document
This example covers the scenario of splitting a single topic document that is referenced in a DITA map.

Figure 24: Root map and the topic documents that it references

Consider the following DITA map, which references generated topics that document the messages that
are produced by an application:

<map>
 <title>Message guide</title>
 <topicref href="about.dita">
 <topicref href="messages-install.dita"/>
 <topicref href="messages-run.dita"/>
 <topicref href="messages-other.dita"/>
 </topicref>
</map>

The following code samples show the contents of the four topic documents: about.dita, messages-
install.dita, messages-run.dita, and messages-other.dita.

<!-- about.dita -->
<topic id="about">
 <title>About this guide</title>
 <shortdesc>Warnings or errors are displayed when ... <shortdesc>
</topic>

<!-- messages-install.dita -->
<dita>
 <topic id="INS001">
 <title>INS001: Installation failure</title>
 <!-- Explanation and recovery steps ... -->
 </topic>
 <!-- More topics that document installation messages ... -->
</dita>

<! messages-run.dita -->
<dita>
 <topic id="RUN001">
 <title>RUN001: Failed to initialize</title>
 <!-- Explanation and recovery steps ... -->
 </topic>
 <!-- Hundreds of message topics ... -->
 <topic id="RUN999">
 <title>RUN999: Out of memory</title>
 <!-- Explanation and recovery steps ... -->
 </topic>
</dita>

<!-- messages-other.dita -->
<topic id="othermsg">
 <title>Other messages</title>
 <shortdesc>You could also encounter ... </shortdesc>
 <topic id="OTHER001">
 <title>OTHER001: Analyzer is tired</title>
 <!-- Explanation and recovery steps ... -->
 </topic>
 <topic id="OTHER002">
 <title>OTHER002: Analyzer needs to be updated</title>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 85 of 471

 <!-- Explanation and recovery steps ... -->
 </topic>
</topic>

When processed to HTML5, this map might result in four result documents: about.html, messages-
install.html, messages-run.html, and messages-other.html.

Figure 25: Splitting topics in one topic document

With hundreds of messages in messages-run.dita, it might be better in some situations to render one
result document for each message topic in the document. This can be done by specifying
chunk="split" on the topic reference to messages-run.dita:

<map>
 <title>Message guide</title>
 <topicref href="about.dita">
 <topicref href="messages-install.dita"/>
 <topicref href="messages-run.dita" chunk="split"/>
 <topicref href="messages-other.dita"/>
 </topicref>
</map>

Figure 26: Equivalent content of source documents after evaluation

The result of evaluating @chunk in this case is equivalent to the following map. While messages-
run.dita now is split into hundreds of topics, the other topics in the map are unaffected.

<map>
 <title>Message guide for WidgetAnalyzer</title>
 <topicref href="about.dita">
 <topicref href="messages-install.dita"/>
 <topicref href="RUN001.dita"/>
 <!-- Hundreds of topic references to message topics ... -->
 <topicref href="RUN999.dita"/>
 <topicref href="messages-other.dita"/>
 </topicref>
</map>

Note Because the @chunk attribute does not cascade, even if the topic reference to messages-
run.dita had child topic references, they would be unaffected by the chunk="split"
operation in this example.

Splitting all topic documents in a map
This example covers the scenario of splitting all the topic documents that are referenced in a DITA map.

Figure 27: Root map with chunking specified

Specifying chunk="split" on the <map> element sets a default for the entire map. The following
change to the DITA map results in every referenced DITA document being split into one document per
topic. The only source document that is not affected by this splitting operation is about.dita, because it
only contains only one topic.

<map chunk="split">
 <title>Message guide</title>
 <topicref href="about.dita">
 <topicref href="messages-install.dita"/>
 <topicref href="messages-run.dita"/>
 <topicref href="messages-other.dita"/>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 86 of 471

 </topicref>
</map>

Figure 28: Result of evaluating chunk="split"

The result of evaluating chunk="split" specified on the map element yields the following results:

• about.dita is unchanged.
• messages-install.dita is split into one document for each message.
• messages-run.dita is split into one document for each message, exactly as in the previous

example.
• messages-other.dita contains a root topic and two child topics, so it results in three

documents. The hierarchy of those documents is preserved in the map.

Figure 29: Equivalent content of source documents after evaluation

The result of evaluating the @chunk attribute is the following map:

<map>
 <title>Message guide</title>
 <topicref href="about.dita">
 <topicref href="INS001.dita"/>
 <!-- More topic references to installation messages ... -->
 <topicref href="RUN001.dita"/>
 <!-- Hundreds of topic references to message topics ... -->
 <topicref href="RUN999.dita"/>
 <topicref href="othermsg.dita">
 <topicref href="OTHER001.dita"/>
 <topicref href="OTHER002.dita"/>
 </topicref>
 </topicref>
</map>

5.4.5.6 Example: How chunk="split" affects the map hierarchy
Special attention is necessary when evaluating the map hierarchy that results from splitting documents
that contain nested topics.

Figure 30: Source DITA map with chunking specified

Consider the following DITA map:

<map chunk="split">
 <title>Generation example</title>
 <topicref href="ancestor.dita">
 <topicref href="middle.dita">
 <topicref href="child.dita"/>
 </topicref>
 </topicref>
</map>

Here, the @chunk attribute instructs a processor to render every topic in each of the three documents as
its own document, while preserving any hierarchy from those documents.

Figure 31: Source topic documents with nested or peer topics

Now consider the following three topic documents, each of which includes nested or peer topics:

<!-- ancestor.dita -->
<dita>
 <topic id="ancestor-first">
 <title>First major topic in ancestor composite document</title>
 <!-- ... Topic content ... -->
 </topic>
 <!-- More topics in ancestor composite document -->

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 87 of 471

 <topic id="ancestor-last">
 <title>Last major topic in ancestor composite document</title>
 <!-- ... Topic content ... -->
 <topic id="ancestor-last-child">
 <title>Child of last major topic in ancestor composite document</title>
 <!-- ... Topic content ... -->
 </topic>
 </topic>
</dita>

<!-- middle.dita -->
<topic id="middle-root">
 <title>Root topic in middle document</title>
 <body>
 <!-- ... -->
 </body>
 <topic id="middle-child">
 <title>Child of root topic in middle document</title>
 <!-- ... Body content, maybe more children topics ... -->
 </topic>
</topic>

<!-- child.dita -->
<topic id="child">
 <title>Small child topic</title>
 <!-- ... Topic content ... -->
</topic>

Figure 32: Evaluating chunk="split"

When chunk="split" is evaluated, both ancestor.dita and middle.dita are split and treated as
multiple topic documents. child.dita is only a single topic and has nothing to split.

The following list addresses how the split operation effects the map hierarchy:

• ancestor.dita has a root <dita> element, so it results in multiple peer topic references (or
branches) in the map. Topic references that were nested within the original reference to
ancestor.dita are now located within the reference to "ancestor-last" (the last topic child of the
<dita> element).

• middle.dita has nested topics, so it results in its own new hierarchy within the map. Content
from the nested topic reference is now located within the reference to the root topic from
middle.dita, but after any references to child topics.

Figure 33: Equivalent content of source documents after evaluation

The result of evaluating the @chunk attribute is equivalent to the following DITA map:

<map chunk="split">
 <title>Generation example</title>
 <topicref href="ancestor-first.dita"/>
 <!-- More topics in ancestor composite document -->
 <topicref href="ancestor-last.dita">
 <topicref href="ancestor-last-child.dita"/>
 <!-- middle.dita now located here, as final child of
 final topic child of <dita> in ancestor.dita -->
 <topicref href="middle-root.dita">
 <topicref href="middle-child.dita"/>
 <!-- child.dita now located here, as final topic of
 child root topic in middle.dita ancestor.dita -->
 <topicref href="child.dita"/>
 </topicref>
 </topicref>
</map>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 88 of 471

5.4.5.7 Example: When @chunk is ignored
The @chunk attribute is ignored in some cases, such as when chunk="combine" is already in effect or
when chunk="split" is specified on a grouping element.

Figure 34: Ignoring @chunk when already combining topics

In the following code sample, evaluating chunk="combine" results in one rendered document for each
map branch. Any additional @chunk values within those branches are ignored, including any @chunk
values within any referenced maps.

<map>
 <title>Ignoring chunking when already combined</title>

 <topicref href="branchOne.dita" chunk="combine">
 <!-- @chunk ignored for branchOneChild.dita -->
 <topicref href="branchOneChild.dita" chunk="split"/>
 </topicref>

 <topicref href="branchTwo.dita" chunk="combine">
 <!-- Any @chunk within submap.ditamap is ignored -->
 <topicref href="submap.ditamap" format="ditamap"/>
 </topicref>

Figure 35: Ignoring @chunk on a grouping element

In the following code sample, chunk="split" is specified on two grouping elements.

<map>
 <title>Trying to "split" groups</title>
 <topicgroup chunk="split">
 <topicref href="ingroup1.dita"><!--...--></topicref>
 <topicref href="ingroup2.dita"><!--...--></topicref>
 </topicgroup>
 <topichead chunk="split">
 <topicmeta>
 <navtitle>Heading for a branch</navtitle>
 </topicmeta>
 <topicref href="inhead1.dita"><!--...--></topicref>
 <topicref href="inhead2.dita"><!--...--></topicref>
 </topichead>
</map>

The result of evaluating chunking is the following:

• The @chunk attribute on the <topicgroup> element is ignored. The @chunk attribute does not
cascade and there is no referenced topic, so it has no effect.

• In some cases, an implementation might treat the <topichead> element as equivalent to a
single title-only topic, while in other cases it might be ignored. In either case, the @chunk value
has no effect. If the <topichead> is treated as a title-only topic, it cannot be split further. If it is
ignored for the current processing context, it is no different than the <topicgroup> element.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 89 of 471

5.4.5.8 Example: Using chunk="combine" when the root map specifies
chunk="split"
While @chunk attributes are ignored when chunk="combine" is already in effect, it is possible to use
chunk="combine" when chunk="split" is in effect.

Figure 36: Source DITA map

Consider the following DITA map, where chunk="split" is specified on the root element. The effect of
this operation is that all topic documents within the map structure are split by default. However, a map
branch also specifies chunk="combine":

<map chunk="split">
 <title>Split most, but not one branch</title>
 <topicref href="splitme.dita">
 <!-- More topic references -->
 </topicref>
 <topicref href="exception.dita" chunk="combine">
 <!-- More topic references -->
 </topicref>
 <topicref href="splitmetoo.dita">
 <!-- More topic references -->
 </topicref>
</map>

Assume also that no other @chunk attributes are specified in the map.

Figure 37: Evaluation of @chunk attributes in the map

The following points are true when @chunk is evaluated:

• The document splitme.dita is rendered as one result document for each topic.. The same is
true for any other topic document within the map branch.

• The second map branch, where the outermost <topicref> elements references
exception.dita, is rendered as a single result document that combines all topic documents
within the map branch.

• The document splitmetoo.dita is rendered as one result document for each topic.. The same
is true for any other topic document within the map branch.

5.4.5.9 Example: Managing links when chunking
If a topic is referenced more than once and one of those instances involves chunking, links to that topic
might be ambiguous. In most of such cases, using key references to keys that are defined directly on the
chunked instance of the topic will give the correct result.

Figure 38: Source map and the topic documents that it references

Consider the following DITA map, which is used for all examples in this topic:

<map>
 <title>Map with chunks and key definitions</title>
 <!-- Key definitions -->
 <keydef href="splitThis.dita" keys="splitThisKey"/>
 <keydef href="splitThis.dita#splitThisChild" keys="splitThisChildKey"/>
 <!-- Navigational structure -->
 <topicref href="splitThis.dita" chunk="split" keys="explicitSplitKey"/>
 <topicref href="combineThis.dita" chunk="combine" keys="combineThisKey">
 <topicref href="combinedChild.dita" keys="combinedChildKey"/>
 </topicref>
</map>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 90 of 471

The DITA map references the following topics:

<!-- splitThis.dita -->
<topic id="splitThisRoot">
 <title>Root topic</title>
 <!-- ... -->
 <topic id="splitThisChild">
 <title>Child topic</title>
 <!-- ... -->
 </topic>
</topic>

<!-- combineThis.dita -->
<topic id="combineThisRoot">
 <title>Root topic</title>
 <!-- ... -->
 <topic id="combineThisChild">
 <title>Child topic</title>
 <!-- ... -->
 </topic>
</topic>

<!-- combinedChild.dita -->
<topic id="combinedChildRoot">
 <title>Topic in map branch, will be combined with parent topicref</title>
 <!-- ... -->
</topic>

Figure 39: Scenario in which the topic documents are rendered only once

Assume that the above map is a root map or a submap that is referenced in a context that does not
include any references to the above topic documents.

The topic documents that are referenced in the above map are rendered in the following ways:

• splitThis.dita, which contains two topics, is rendered as two documents. For this example,
assume the processor creates two documents with names that are based on the topic IDs:
splitThisRoot.dita and splitThisChild.dita.

• The map branch with combineThis.dita, which contains two topic references, is rendered as
one document: combineThis.dita. The document contains the merged content of both
combineThis.dita and combinedChild.dita.

Links are resolved in the following ways. Note that the document names are those listed in the above
explanation of how the topic documents are rendered in this scenario.

• All links that specify href="splitThis.dita", keyref="splitThisKey", or
keyref="explicitSplitKey" resolve to splitThisRoot.dita, which is the only rendered
instance of the topic.

• All links that specify href="splitThis.dita#splitThisChild" or
keyref="splitThisChildKey" resolve to splitThisChild.dita, which is the only
rendered instance of the topic.

• All links that specify href="combinedChild.dita" or keyref="combinedChildKey"
resolve to that topic within combineThis.dita, which is the only rendered instance of the topic.

Figure 40: Scenario in which the topic documents are rendered more than once

Now assume that the above map is used as a submap in another context, where the root map also
references the three topic documents. As a result, each of the three topic documents (splitThis.dita,
combineThis.dita, and combinedChild.dita) are rendered more than once.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 91 of 471

In this scenario, the topic documents are rendered in the following ways:

• The original source document splitThis.dita is rendered twice. Based on the map above,
assume the processor creates two documents with names that are based on the topic IDs, so that
topic becomes splitThisRoot.dita and splitThisChild.dita. At the same time,
splitThis.dita is rendered in another context as a single document, with a different name.

• Based on the map above, the branch that starts with the original source document
combineThis.dita is rendered as one document combined with the content of
combinedChild.dita. At the same time, those two documents are rendered in another context
as individual documents. For this example, assume a processor generates the combined
document using the generated name combinThis-2.dita, while the documents
combineThis.dita and combinedChild.dita retain their names in the other context.

In this scenario, the links to the topic documents are now problematic:

• All links in this map that use the direct URI references href="splitThis.dita",
href="splitThis.dita#splitThisChild", href="combineThis.dita", or
href="combinedChild.dita" are ambiguous. They could resolve to either the chunked
instance of the topic documents or to the individual topics in the other context. Implementations
will have to guess which topic to target: the split or combined instances of the topic documents or
the versions in the alternate context from the root map.

• All links that specify keyref="splitThisKey" or keyref="splitThisChildKey" are also
ambiguous. The key definitions are not associated explicitly with the chunked or not-chunked
instance. If key scopes are used, applications might more reliably guess that the intended target is
the split copy in this map, but this is not guaranteed.

All links that specify keyref="explicitSplitKey", keyref="combinedThisKey", or
keyref="combinedChildKey" are unambiguous. These links can only resolve to the chunked
instance of the topic documents, because the key definitions are defined directly within the chunked
context.

There is no way to unambiguously link to the child document that will result from splitting
splitThis.dita. This is because a <topicref> element that specifies @chunk can only associate a
key definition with the first or root topic in the document. While other key definition elements can be used
to associate keys with other topics in the same document, that can only be done outside of the navigation
context that uses @chunk. As a result, a processor cannot guarantee whether the intended link target is
the split topic from the chunked context or a use of the same topic in the second context.

It is possible for an implementation to define its own way to resolve this ambiguity. However, if a situation
requires both multiple instances of split topics and unambiguous cross-implementation links to those split
topics, alternate reuse mechanisms need to be considered.

Comment by Kristen J Eberlein on 03 February 2022

What do we mean by cross-implementation links? Can we rephrase this? Or simply remove the
adjective "cross-implementation"?

I think that the situation that we are targeting involves the following:

• Multiple navigational references to a topic, at least one of which is chunked
• A need to have unambiguous links to each instance of the topic

Disposition: Unassigned

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 92 of 471

6 DITA addressing
DITA provides two addressing mechanisms. DITA addresses either are direct URI-based addresses, or
they are indirect key-based addresses. Within DITA documents, individual elements are addressed by
unique identifiers specified on the @id attribute. DITA defines two fragment-identifier syntaxes; one is the
full fragment-identifier syntax, and the other is an abbreviated fragment-identifier syntax that can be used
when addressing non-topic elements from within the same topic.

Comment by Kristen J Eberlein on 01 March 2022

This needs a complete redo to be an effective introduction to the current content.

Disposition: Unassigned

6.1 @id attribute
The @id attribute assigns an identifier to DITA elements so that the elements can be referenced.

The @id attribute is available for most elements. An element must have a valid value for the @id attribute
before it can be referenced using a fragment identifier. The requirements for the @id attribute differ
depending on whether it is used on a topic element, a map element, or an element within a topic or map.

All values for the @id attribute must be XML name tokens.

The @id attributes for <topic> and <map> elements are declared as XML attribute type ID; therefore,
they must be unique with respect to other XML IDs within the XML document that contains the topic or
map element. The @id attribute for most other elements within topics and maps is not declared to be
XML ID; this means that XML parsers do not require that the values of those @id attributes be unique.
However, the DITA specification requires that all IDs be unique within the context of a topic. For this
reason, tools might provide an additional layer of validation to flag violations of this rule.

Within documents that contain multiple topics, identifiers are scoped to the individual topic, excluding
child topics. The values of the @id attribute for all non-topic elements only need to be unique within that
topic. For example, within one document a section can have the same @id as another section as long as
the two are in different topics. This is true even if one of those topics is nested within the other; the scope
is determined by the closest topic element within the document hierarchy.

019 (386) Within a map document, the values of the @id attributes for all elements SHOULD
be unique. When two elements within a map have the same value for the @id
attribute, processors MUST resolve references to that ID to the first element with
the given ID value in document order.

Figure 41: Summary of requirements for the @id attribute

Element XML attribute type for
@id

Must be unique
within

Required?

<map> ID document No

<topic> ID document Yes

sub-map (elements nested
within a map)

NMTOKEN document Usually no, with some
exceptions

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 93 of 471

Element XML attribute type for
@id

Must be unique
within

Required?

sub-topic (elements nested
within a topic)

NMTOKEN individual topic Usually no, with some
exceptions

Note For tools that automatically assign @id attributes to elements, it is important to recognize that
the presence or absence of an @id attribute on the <fn> element will affect how the element
is processed. For most other elements, the presence of a value for the @id attribute has no
impact on processing.

6.2 DITA linking
DITA supports many different linking elements, but they all use the same set of attributes: @format,
@href, @scope, and @type. These four attributes act as a unit.

6.2.1 The @format attribute
The @format attribute identifies the format of the referenced resource.

The following values are explicitly supported:

dita
Indicates that the target is a DITA topic or an element in a DITA topic. Unless otherwise specified,
when @format is set to "dita", the value for the @type attribute is treated as "topic".

ditamap
Indicates that the target is a DITA map. References to submaps can occur at any point in a map.

When a topic reference specifies format="ditamap", the topic reference resolves in one of the
following ways:

Target of <topicref> Resolution of <topicref>
DITA map The hierarchy of all the topic references in the targeted map

Map branch The hierarchy of the targeted map branch

When a topic reference targets an entire DITA map and the referenced map contains a relationship
table, there are special processing implications. Because relationship tables are only valid as direct
children of the DITA map, referenced relationship tables are treated as children of the referencing
map.

Comment by Kristen J Eberlein on 03 March 2022

I think we need to have an example of the expected processing behaviour. I think it is a good
candidate for the new chapter on "DITA map processing".

Disposition: Unassigned

Note If a <topicref> element that references a map contains child <topicref> elements,
the processing behavior regarding the child <topicref> elements is undefined.

For other formats, the file extension without the "." character typically represents the format. For example,
the following are all possible values for @format: "html", "pdf", or "txt".

If no value is explicitly specified for the @format attribute, the following precedence rules apply:

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 94 of 471

1. If the @format attribute is specified on a containing element within the map or within the related-
links section of a topic, the value cascades from the closest containing element.

2. If a value for the @format attribute does not cascade, the processing default is used. The
processing default for the @format attribute is determined by inspecting the value of the @href
attribute:

a. If the @href attribute specifies a file extension, the processing default for the @format
attribute is that extension, after conversion to lower-case and with no leading period. The
only exception to this is if the extension is .xml, in which case the default value for
@format is "dita".

b. If there is no file extension, but the @href value is an absolute URI whose scheme is
"http" or "https", then the processing default is "html".

c. In all other cases where no file extension is available, the processing default is "dita".

020 (386) If the actual format of the referenced content differs from the effective value of the
@format attribute, and a processor is capable of identifying such cases, it MAY
recover gracefully and treat the content as its actual format. The processor MAY
also issue a message.

For processors that support Lightweight DITA, the following table summarizes values for the @format
attribute:

Document type Value of the @format attribute Description

Map hditamap HDITA map

mditamap MDITA map

xditamap XDITA map

Topic hdita HDITA topic

mdita MDITA topic

xdita XDITA topic

6.2.2 The @href attribute
The @href attribute specifies the URI of the resource that is addressed. The referenced resource can be
another DITA topic or map, an element inside a DITA topic or map, or a non-DITA resource.

021 (386) The value of the @href attribute MUST be a valid URI reference [RFC 3986]. If the
value of the @href attribute is not a valid URI reference, an implementation MAY
generate an error message. It MAY also recover from this error condition by
attempting to convert the value to a valid URI reference.

The value of the @href attribute can optionally contain a fragment identifier.

When an @href attribute references a DITA resource using a URI without a fragment identifier, the URI
resolves to the root element in the referenced document. For the purposes of rendering, such as when a
topic reference to a DITA document is used to render the content as HTML, this means that all topics in
the target document are included in the reference. For the purpose of linking, the reference resolves to
the first topic in the document.

When an @href attribute references a DITA resource using a URI with a fragment identifier, the portion
after the hash must be a DITA local identifier. A DITA local identifier takes the following forms:

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 95 of 471

http://www.ietf.org/rfc/rfc3986.txt

Target Syntax

Topic element topicID

Element in a topic topicID/elementID
Element in a map mapElementID

Where:

• topicID is the value of the @id attribute of the DITA topic. If the topic referenced by a DITA local
identifier is the same topic that includes the reference, then topicID can be replaced by a period.

• elementID is the value of the @id attribute of the non-topic element within a DITA topic.
• mapElementID is the value of the @id attribute of the element within a DITA map document.

See 7.3.9 Processing xrefs and conrefs within a conref (152) for more information on how this syntax
relates to conref resolution.

Example: Common syntax for the @href attribute
The following table includes some examples of common @href syntax. Note that these examples
represent only a few common scenarios and are not all-inclusive.

Target Syntax

The first topic in a DITA document href="file.dita"
A specific topic in a DITA document href="file.dita#topicid"
A non-topic element inside a DITA topic href="file.dita#topicid/elementid"
A non-topic element inside the same DITA topic as the
reference

href="#./elementid"

An element in a DITA map href="myMap.ditamap#map-branch"
An image href="exampleImage.jpg"
An external resource href="http://www.example.org"

where:

• topicid is the value of the @id attribute on the referenced DITA topic.
• elementid is the value of the @id attribute on the referenced (non-topic) DITA element.
• map-branch is the value of the @id attribute on the referenced DITA map element.

6.2.3 The @scope attribute
The @scope attribute identifies the closeness of the relationship between the current document and the
target resource.

The @scope attribute takes the following values:

external
Indicates that the resource is not part of the current set of content.

local
Indicates that the resource is part of the current set of content.

peer
Indicates one of the following:

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 96 of 471

• The resource is part of the current set of content, but it might not be accessible at build time.
• The resource should be treated as a root map for the purpose of creating map-to-map key

references (peer maps).
• The resource is a peer map. If @keyscope is also specified on the reference, it indicates that

the map should be treated as a separate deliverable for the purposes of linking.

-dita-use-conref-target
See 7.3.6 Using the -dita-use-conref-target value (149) for more information on "-dita-use-conref-
target"

If no value is specified for the @scope attribute, the following considerations apply:

• If the @scope attribute is specified on a containing element within a map or within the related-links
section, the value cascades from the closest containing element.

• In most cases, the processing default is "local". However the processing default is "external"
whenever the absolute URI in the @href attribute begins with one of the following schemes:
"http", "https", "ftp", or "mailto"

022 (386) For the @scope attribute, processors can consider additional URI schemes as
"external" by default. Processors MUST always consider relative URIs as "local" by
default.

6.2.4 The @type attribute
On linking elements, the @type attribute describes the target of a reference. The @type attribute is also
used on several non-linking elements for other purposes.

This topic describes how to interpret the @type attribute when it is used on linking elements. Usage
information for the @type attribute on other elements, such as <note> or <copyright>, is described in
the element reference topics for those elements.

If the @type attribute is specified on a linking element that references DITA content, the attribute value
should reflect the @class attribute of the referenced element. The value can be an unqualified local
name, for example, "fig", or a qualified name exactly as specified in the @class attribute, for example,
"topic/fig". Processors might ignore qualified names or consider only the local name.

If not explicitly specified on an element, the @type attribute value cascades from the closest containing
element. If there is no explicit value for the @type attribute specified on an ancestor element, the
processor should retrieve the type from the target resource, if it is available. If the type cannot be
determined, the processing default is "topic".

023 (386) Applications MAY issue a warning when the specified or inherited @type attribute
value does not match the target or a specialization ancestor of the target.
Applications MAY recover from this error condition by using the correct value
detected.

Only the <xref> element can link to content below the topic level. The other linking elements only can
link to topics.

The following table lists values for the @type attribute that are commonly used on <xref> elements:

Value Target element

fig <fig>
fn <fn>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 97 of 471

Value Target element

li
section <section>
table <table>

An application might generate cross-reference text that is based the value of the @format attribute.

"-dita-use-conref-target" is also a valid value for the @type attribute. See 7.3.6 Using the -dita-use-conref-
target value (149) for more information.

6.3 URI-based (direct) addressing
Content reference and link relationships can be established from DITA elements by using URI references.
DITA uses URI references in @href, @conref, and other attributes for all direct addressing of resources.

URI references address resources and (in some cases) subcomponents of those resources. In this
context, a resource is a DITA document (map, topic, or DITA base document) or a non-DITA resource (for
example, an image, a Web page, or a PDF document).

URI references that are URLs must conform to the rules for URLs and URIs. Windows paths that contain
a backslash (\) are not valid URLs.

URIs and fragment identifiers
For DITA resources, fragment identifiers can be used with the URI to address individual elements. The
fragment identifier is the part of the URI that starts with a number sign (#), for example, #topicid/
elementid. URI references also can include a query component that is introduced with a question mark
(?).

024 (386) DITA processors MAY ignore queries on URI references to DITA resources. URI
references that address components in the same document MAY consist of just the
fragment identifier.

For addressing DITA elements within maps and topics or individual topics within documents containing
multiple topics, URI references must include the appropriate DITA-defined fragment identifier. URI
references can be relative or absolute. A relative URI reference can consist of just a fragment identifier.
Such a reference is a reference to the document that contains the reference.

Addressing non-DITA targets using a URI
DITA can use URI references to directly address non-DITA resources. Any fragment identifier used must
conform to the fragment identifier requirements that are defined for the target media type or provided by
processors.

Addressing elements within maps using a URI
When addressing elements within maps, URI references can include a fragment identifier that includes
the ID of the map element, for example, filename.ditamap#mapId or #mapId. The same-topic, URI-
reference fragment identifier of a period (.) can not be used in URI references to elements within maps.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 98 of 471

Addressing topics using a URI
When addressing a DITA topic element, URI references can include a fragment identifier that includes the
ID of the topic element (filename.dita#topicId or #topicId). When addressing the DITA topic
element that contains the URI reference, the URI reference might include the same topic fragment
identifier of "." (#.).

Topics always can be addressed by a URI reference whose fragment identifier consists of the topic ID.
For the purposes of linking, a reference to a topic-containing document addresses the first topic within
that document in document order. For the purposes of rendering, a reference to a topic-containing
document addresses the root element of the document.

Consider the following examples:

• Given a document whose root element is a topic, a URI reference (with no fragment identifier) that
addresses that document implicitly references the topic element.

• Given a <dita> document that contains multiple topics, for the purposes of linking, a URI
reference that addresses the <dita> document implicitly references the first child topic.

• Given a <dita> document that contains multiple topics, for the purposes of rendering, a URI
reference that addresses the <dita> document implicitly references all the topics that are
contained by the <dita> element. This means that all the topics that are contained by
the<dita> element are rendered in the result.

Addressing non-topic elements using a URI
When addressing a non-topic element within a DITA topic, a URI reference must use a fragment identifier
that contains the ID of the ancestor topic element of the non-topic element being referenced, a slash ("/"),
and the ID of the non-topic element (filename.dita#topicId/elementId or #topicId/
elementId). When addressing a non-topic element within the topic that contains the URI reference, the
URI reference can use an abbreviated fragment-identifier syntax that replaces the topic ID with "." (#./
elementId).

This addressing model makes it possible to reliably address elements that have values for the @id
attribute that are unique within a single DITA topic, but which might not be unique within a larger XML
document that contains multiple DITA topics.

Examples: URI reference syntax
The following table shows the URI syntax for common use cases.

Use case Sample syntax

Reference a table in a topic at a network
location

"http://example.com/file.dita#topicID/tableID"

Reference a section in a topic on a local
file system

"directory/file.dita#topicID/sectionID"

Reference a figure contained in the
same XML document

"#topicID/figureID"

Reference a figure contained in the
same topic of an XML document

"#./figureID"

Reference an element within a map "http://example.com/map.ditamap#elementID" (and a value of
"ditamap" for the @format attribute)

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 99 of 471

Use case Sample syntax

Reference a map element within the
same map document

"#elementID" (and a value of "ditamap" for the @format attribute)

Reference an external Web site "http://www.example.com", "http://
www.example.com#somefragment" or any other valid URI

Reference an element within a local
map

"filename.ditamap#elementid" (and a value of "ditamap" for the
@format attribute)

Reference a local map "filename.ditamap" (and a value of "ditamap" for the @format
attribute)

Reference a local topic Reference a local topic "filename.dita" or "path/
filename.dita"

Reference a specific topic in a local
document

"filename.dita#topicid" or "path/filename.dita#topicid"

Reference a specific topic in the same
file

"#topicid"

Reference the same topic in the same
XML document

"#."

Reference a peer map for cross-
deliverable linking

"../book-b/book-b.ditamap" (and a value of "ditamap" for the
@format attribute, a value of "peer" for the @scope attribute, and a
value for the @keyscope attribute)

6.4 Indirect key-based addressing
DITA keys provide an alternative to direct addressing. The key reference mechanism provides a layer of
indirection so that resources (for example, URIs, metadata, or variable text strings) can be defined at the
DITA map level instead of locally in each topic.

For information about using keys to define and reference controlled values, see 5.2 Subject scheme
maps and their usage (59).

Note The material in this section of the DITA specification is exceptionally complex; it is targeted at
implementers who build processors and other rendering applications.

6.4.1 Core concepts for working with keys
The concepts described below are critical for a full understanding of keys and key processing.

The use of the phases "<map> element" or "<topicref> element" should be interpreted as "<map>
element and any specialization of <map> element " or " <topicref> element or any specialization of
<topicref> element."

Definitions related to keys
resource

For the purposes of keys and key resolution, one of the following:

• An object addressed by URI
• Metadata specified on a resource, such as a @scope or @format attribute
• Text or metadata located within a <topicmeta> element

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 100 of 471

key
A name for a resource. See 6.4.4 Using keys for addressing (103) for more information.

key definition
A <topicref> element that binds one or more key names to zero or more resources.

key reference
An attribute that references a key, such as @keyref or @conkeyref.

key space
A list of key definitions that are used to resolve key references.

effective key definition
The definition for a key within a key space that is used to resolve references to that key. A key might
have multiple definitions within a key space, but only one of those definitions is effective.

key scope
A map or section of a map that defines its own key space and serves as the resolution context for its
key references.

Key definitions
A key definition binds one or more keys to zero or more resources. Resources can be:

• Any URI-addressed resource that is referenced directly by the @href attribute or indirectly by the
@keyref attribute on the key definition. References to the key are considered references to the
URI-addressed resource.

• (If the key definition contains a child <topicmeta> element) The child elements of the
<topicmeta> element. The content of those elements can be used to populate the content of
elements that reference the key.

If a key definition does not contain a <topicmeta> element and does not refer to a resource by @href
or @keyref, it is nonetheless a valid key definition. References to the key definition are considered
resolvable, but no linking or content transclusion occurs.

Key scopes
All key definitions and key references exist within a key scope. If the @keyscope attribute is never
specified within the map hierarchy, all keys exist within a single, default key scope.

Additional key scopes are created when the @keyscope attribute is used. The @keyscope attribute
specifies a name or names for the scope. Within a map hierarchy, key scopes are bounded by the
following:

• The root map.
• The root element of submaps when the root elements of the submaps specify the @keyscope

attribute
• Any <topicref> elements that specify the @keyscope attribute

Key spaces
The key space associated with a key scope is used to resolve all key references that occur immediately
within that scope. Key references in child scopes are resolved using the key spaces that are associated
with those child scopes.

A key scope is associated with exactly one key space. That key space contains all key definitions that are
located directly within the scope; it might also contain definitions that exist in other scopes. Specifically,

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 101 of 471

the key space associated with a key scope is comprised of the following key definitions, in order of
precedence:

1. All key definitions from the key space associated with the parent key scope, if any.
2. Key definitions within the scope-defining element, including those defined in directly-addressed,

locally-scoped submaps, but excluding those defined in child scopes. (Keys defined in child
scopes cannot be addressed without qualifiers.)

3. The key definitions from child scopes, with each key prepended by the child scope name followed
by a period. If a child scope has multiple names, the keys in that scope are addressable from the
parent scope using any of the scope names as a prefix.

Note Because of rules 1 and 3, the key space that is associated with a child scope includes the
scope-qualified copies of its own keys that are inherited from the key space of the parent
scope, as well as those from other "sibling" scopes.

Effective key definitions
A key space can contain many definitions for a given key, but only one definition is effective for the
purpose of resolving key references.

When a key has a definition in the key space that is inherited from a parent scope, that definition is
effective. Otherwise, a key definition is effective if it is first in a breadth-first traversal of the locally-scoped
submaps beneath the scope-defining element. Put another way, a key definition is effective if it is the first
definition for that key name in the shallowest map that contains that key definition. This allows higher-
level map authors to override keys defined in referenced submaps.

Note A key definition that specifies more than one key name in its @keys attribute might be the
effective definition for some of its keys but not for others.

Within a key scope, keys do not have to be defined before they are referenced. The key space is effective
for the entire scope, so the order of key definitions and key references relative to one another is not
significant. This has the following implications for processors:

• All key spaces for a root map must be determined before any key reference processing can be
performed.

• Maps referenced solely by key reference have no bearing on key space contents.

For purposes of key definition precedence, the scope-qualified key definitions from a child scope are
considered to occur at the location of the scope-defining element within the parent scope. See 6.4.14.5
Example: How key scopes affect key precedence (126) for more information.

6.4.2 Setting key names with the @keys attribute
A @keys attribute consists of one or more space-separated keys. Map authors define keys using a
<topicref> or <topicref> specialization that contains the @keys attribute. Each key definition
introduces an identifier for a resource referenced from a map. Keys resolve to the resources given as the
@href value on the key definition <topicref> element, to content contained within the key definition
<topicref> element, or both.

Comment by robander on 19 May 2021
This topic was moved from the langref; it needs to be here as it defines normative rules about the
syntax of a key attribute. The following paragraph comes from reuse-general but in the base spec this
is the only use, so should probably be taken out of the reuse file. Need to go over this section more
closely now that attribute content has moved here.
Disposition: Unassigned

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 102 of 471

The @keys attribute uses the following syntax:

• The value of the @keys attribute is one or more space-separated key names.
• Key names consist of characters that are legal in a URI. The case of key names is significant.
• The following characters are prohibited in key names: "{", "}", "[", "]", "/", "#", "?", and whitespace

characters.

A key cannot resolve to sub-topic elements, although a @keyref attribute can do so by combining a key
with a sub-topic element id.

Related concepts
Indirect key-based addressing (100)
DITA keys provide an alternative to direct addressing. The key reference mechanism provides a layer
of indirection so that resources (for example, URIs, metadata, or variable text strings) can be defined
at the DITA map level instead of locally in each topic.

6.4.3 The @keyref attribute
The @keyref attribute provides an indirect, late-bound reference to topics, to collections of topics
(ditabase), to maps, to referenceable portions of maps, to non-DITA documents, to external URIs, or to
XML content contained within a key definition topic reference. When the DITA content is processed, the
key references are resolved using key definitions from DITA maps.

Comment by robander
This topic moved from the arch spec section. It needs editing for

• Overlap with existing content - likely needs to merge, definitely remove duplication
• This topic uses a key and the langRef links to it from the definition for @keyref, so if this topic

goes away, be sure to update that keyref

Disposition: Unassigned

For elements that only refer to topics or non-DITA resources, the value of the @keyref attribute is a key
name. For elements that can refer to elements within maps or topics, the value of the @keyref attribute
is a key name, a slash ("/"), and the ID of the target element, where the key name must be bound to either
the map or topic that contains the target element.

Related concepts
Indirect key-based addressing (100)
DITA keys provide an alternative to direct addressing. The key reference mechanism provides a layer
of indirection so that resources (for example, URIs, metadata, or variable text strings) can be defined
at the DITA map level instead of locally in each topic.

6.4.4 Using keys for addressing
For topic references, image references, and other link relationships, resources can be indirectly
addressed by using the @keyref attribute. For content reference relationships, resources can be
indirectly addressed by using the @conkeyref attribute.

Syntax
For references to topics, maps, and non-DITA resources, the value of the @keyref attribute is simply a
key name (for example, keyref="topic-key").

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 103 of 471

For references to non-topic elements within topics, the value of the @keyref attribute is a key name, a
slash ("/"), and the ID of the target element (for example, keyref="topic-key/some-element-id".)

Example
For example, consider this topic in the document file.dita:

<topic id="topicid">
 <title>Example referenced topic</title>
 <body>
 <section id="section-01">Some content.</section>
 </body>
</topic>

and this key definition:

<map>
 <topicref keys="myexample"
 href="file.dita"
 />
</map>

A cross reference of the form keyref="myexample/section-01" resolves to the <section>
element in the topic. The key reference is equivalent to the URI reference
xref="file.dita#topicid/section-01".

6.4.5 Key scopes
Key scopes enable map authors to specify different sets of key definitions for different map branches.

A key scope is defined by a <map> or <topicref> element that specifies the @keyscope attribute. The
@keyscope attribute specifies the names of the scope, separated by spaces. The legal characters for a
key scope name are the same as those for keys.

A key scope includes the following components:

• The scope-defining element
• The elements that are contained by the scope-defining element, minus the elements that are

contained by child key scopes
• The elements that are referenced by the scope-defining element or its descendants, minus the

elements that are contained by child key scopes

If the @keyscope attribute is specified on both a reference to a DITA map and the root element of the
referenced map, only one scope is created; the submap does not create another level of scope hierarchy.
The single key scope that results from this scenario has multiple names; its names are the union of the
values of the @keyscope attribute on the map reference and the root element of the submap. This
means that processors can resolve references to both the key scopes specified on the map reference and
the key scopes specified on the root element of the submap.

The root element of a root map always defines a key scope, regardless of whether a @keyscope attribute
is present. All key definitions and key references exist within a key scope, even if it is an unnamed,
implicit key scope that is defined by the root element in the root map.

Each key scope has its own key space that is used to resolve the key references that occur within the
scope. The key space that is associated with a key scope includes all of the key definitions within the key
scope. This means that different key scopes can have different effective key definitions:

• A given key can be defined in one scope, but not another.
• A given key also can be defined differently in different key scopes.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 104 of 471

Key references in each key scope are resolved using the effective key definition that is specified within its
own key scope.

Example: Key scopes specified on both the map reference and the root element of
the submap
Consider the following scenario:

Figure 42: Root map

<map>
 <mapref keyscope="A" href="installation.ditamap"/>
 <!-- ... -->
</map>

Figure 43: installation.ditamap

<map keyscope="B">
 <!-- ... -->
</map>

Only one key scope is created; it has key scope names of "A" and "B".

6.4.6 The @keyscope attribute
The @keyscope attribute consists of one or more space-separated key scope names. Map authors
define the boundaries for key scopes by specifying the @keyscope attribute on <map> elements,
<topicref> elements, or elements that are specializations of <map> or <topicref>. Such elements,
their contents, and any locally-scoped content referenced from within the element, are considered to be
part of the scope. Keys defined within a scope are only directly referenceable from within the same
scope. They can be referenced from the parent scope using the scope's name, followed by a period,
followed by the key name.

Comment by robander on 19 May 2021
This topic contains a lot of processor / implementation rules and was moved from the langref to the
archspec seciton about keys. Need to merge with existing key scope rules to ensure no duplication / no
conflicting content.

Update Oct 14 2021: there is now a longer example of the non-intersecting behavior in 6.4.14.6
Example: How key scopes with the same name interact (128) so probably want to remove the simpler
example from this page

Disposition: Unassigned

All key scopes are contiguous and non-intersecting. Within a root map, two distinct key scopes with the
same name have no relationship with each other aside from that implied by their relative locations in the
key scope hierarchy. They do not, for example, share key definitions. The only processing impact of a key
scope's names is in defining the prefixes used when contributing qualified key names to the parent scope.
For example, consider the following map segment:

<map>
 <topicgroup keyscope="xyz" id="scope1">
 <keydef keys="a" id="def1"/>
 <!-- other topic references -->
 </topicgroup>
 <topicgroup keyscope="xyz" id="scope2">
 <keydef keys="a" id="def2"/>
 <!-- other topic references -->
 </topicgroup>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 105 of 471

 <!-- lots of other content -->
</map>

This map creates two distinct scopes that happen to use the same name ("xyz"). This results in the
following:

• Each <topicgroup> sets a scope of "xyz" and includes a key "a". From outside of those two
scopes, references to keyref="xyz.a" (key "a" within the scope "xyz") will always resolve to
the first instance of that value, which is in the first <topicgroup>.

• Within the first <topicgroup>, content uses keyref="a" will resolve to the key in that branch
(defined on the element with id="def1").

• Within the second <topicgroup>, content uses keyref="a" will resolve to the key in that
branch (defined on the element with id="def2").

6.4.7 Addressing keys across scopes
When referencing key definitions that are defined in a different key scope, key names might need to be
qualified with key scope names.

A root map might contain any number of key scopes; relationships between key scopes are discussed
using the following terms:

child scope
A key scope that occurs directly within another key scope. For example, in the figure below, key
scopes "A-1" and "A-2" are child scopes of key scope "A".

parent scope
A key scope that occurs one level above another key scope. For example, in the figure below, key
scope "A" is a parent scope of key scopes "A-1" and "A-2".

ancestor scope
A key scope that occurs any level above another key scope. For example, in the figure below, key
scopes "A" and "Root" are both ancestor scopes of key scopes "A-1" and "A-2"

descendant scope
A key scope that occurs any level below another key scope. For example, in the figure below, key
scopes "A", "A-1", and "A-2" are all descendant scopes of the implicit, root key scope

sibling scope
A key scope that shares a common parent with another key scope. For example, in the figure below,
key scopes "A" and "B" are sibling scopes; they both are children of the implicit, root key scope.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 106 of 471

key scope hierarchy
A key scope and all of its descendant scopes.

Figure 44: A key scope hierarchy

Keys that are defined in parent key scopes
The key space that is associated with a key scope also includes all key definitions from its parent key
scope. If a key name is defined in both a key scope and its parent scope, the key definition in the parent
scope takes precedence. This means that a key definition in a parent scope overrides all definitions for
the same key name in all descendant scopes. This enables map authors to override the keys that are
defined in submaps, regardless of whether the submaps define key scopes.

In certain complex cases, a scope-qualified key name (such as "scope.key") can override an unqualified
key name from the parent scope. See 6.4.14.5 Example: How key scopes affect key precedence (126).

Keys that are defined in child key scopes
The key space associated with a key scope does not include the unqualified key definitions from the child
scopes. However, it does include scope-qualified keys from the child scopes. This enables sibling key
scopes to have different key definitions for the same key name.

A scope-qualified key name is a key name, prepended by one or more key scope names and separated
by periods. For example, to reference a key "keyName" defined in a child scope named "keyScope",
specify keyref="keyScope.keyName".

If a key scope has multiple names, its keys can be addressed from its parent scope using any of the
scope names. For example, if a key scope is defined with keyscope="a b c", and it contains a key
name of "product", that key can be referenced from the parent scope by keyref="a.product",
keyref="b.product", or keyref="c.product"
Because a child scope contributes its scope-qualified keys to its parent scope, and that parent scope
contributes its scope-qualified keys to its parent scope, it is possible to address the keys in any
descendant scope by using the scope-qualified key name. For example, consider a key scope named
"ancestorScope" that has a child scope named "parentScope" which in turn has a child scope named
"childScope". The scope "childScope" defines a key named "keyName". To reference the key "keyName"

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 107 of 471

from scope "ancestorScope", specify the scope-qualified key name:
keyref="parentScope.childScope.keyName".

Keys that are defined in sibling key scopes
Because a parent key scope contains scope-qualified keys from all of its child scopes, and a child scope
inherits all of the key definitions (including scope-qualified keys) from its parent scope, it is possible for a
child scope to reference its own scope-qualified keys, as well as those defined by its sibling scopes.

For example, consider two sibling scopes, "scope1" and "scope2". Each scope defines the key
"productName". References to "productName" in each scope resolve to the local definition. However,
since each scope inherits the scope-qualified keys that are available in their parent scope, either scope
can reference "scope1.productName" and "scope2.productName" to refer to the scope-specific definitions
for that key.

6.4.8 Cross-deliverable addressing and linking
A map can use scoped keys to reference keys that are defined in a different root map. This cross-
deliverable addressing can support the production of deliverables that contain working links to other
deliverables.

When maps are referenced and the value of the @scope attribute is set to "peer", the implications are that
the two maps are managed in tandem, and that the author of the referencing map might have access to
the referenced map. Adding a key scope to the reference indicates that the peer map should be treated
as a separate deliverable for the purposes of linking.

Comment by Kristen J Eberlein on 19 April 2022

When this topic is reviewed, we should also check the definition of scope="peer" in the @scope
topic.

Disposition: Unassigned

The keys that are defined by the peer map belong to any key scopes that are declared on the
<topicref> element that references that map. Such keys can be referenced from content in the
referencing map by using scope-qualified key names. However, processors handle references to keys
that are defined in peer maps differently from how they handle references to keys that are defined in
submaps.

DITA processors are not required to resolve key references to peer maps. However, if all resources are
available in the same processing or management context, processors have the potential to resolve key
references to peer maps. There might be performance, scale, and user interface challenges in
implementing such systems, but the ability to resolve any given reference is ensured when the source
files are physically accessible.

Comment by Kristen J Eberlein on 04 July 2019

Should the following statement about what processors do "when a reference to a peer map cannot be
resolved" contain RFC-2119 language?

Disposition: Unassigned

Note the inverse implication; if the peer map is not available, then it is impossible to resolve the key
reference. Processors that resolve key references to peer maps should provide appropriate messages
when a reference to a peer map cannot be resolved. Depending on how DITA resources are authored,

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 108 of 471

managed, and processed, references to peer maps might not be resolvable at certain points in the
content life cycle.

The peer map might specify @keyscope on its root element. In that case, the @keyscope on the peer
map is ignored for the purpose of resolving scoped key references from the referencing map. This avoids
the need for processors to have access to the peer map in order to determine whether a given key
definition comes from the peer map.

Example: A root map that declares a peer map
Consider the DITA maps map-a.ditamap and map-b.ditamap. Map A designates Map B as a peer
map by using the following markup:

<map>
 <title>Map A</title>
 <topicref
 scope="peer"
 format="ditamap"
 keyscope="map-b"
 href="../map-b/map-b.ditamap"
 processing-role="resource-only"
 />
 <!-- ... -->
</map>

In this example, map-b.ditamap is not a submap of Map A; it is a peer map.

Example: Key resolution in a peer map that contains a @keyscope attribute on the
root element
Consider the map reference in map Map A:

<mapref
 keyscope="scope-b"
 scope="peer"
 href="map-b.ditamap"
/>

where map-b.ditamap contains the following markup:

<map keyscope="product-x">
 <!-- ... -->
</map>

From the context of Map A, key references of the form "scope-b.somekey" are resolved to keys that are
defined in the global scope of map B, but key references of the form "product-x.somekey" are not. The
presence of a @keyscope attribute on the <map> element in Map B has no effect. A key reference to the
scope "scope-b.somekey" is equivalent to the unscoped reference "somekey" when processed in the
context of Map B as the root map. In both cases, the presence of @keyscope on the root element of Map
B has no effect; in the first case it is explicitly ignored, and in the second case the key reference is within
the scope "product-x" and so does not need to be scope qualified.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 109 of 471

6.4.9 Processing key references
Key references can resolve as links, as text, or as both. Within a map, they also can be used to create or
supplement information on a topic reference. This topic covers information that is common to all key
processing, regardless of how the key is used.

Processing of undefined keys

025 (386) If both @keyref and @href attributes are specified on an element, the @href
value MUST be used as a fallback address when the key name is undefined. If both
@conkeyref and @conref attributes are specified on an element, the @conref
value MUST be used as a fallback address when the key name is undefined.

Determining effective attributes on the key-referencing element
The attributes that are common to the key-defining element and the key-referencing element, other than
the @keys, @processing-role, and @id attributes, are combined as for content references, including
the special processing for the @xml:lang, @dir, and @translate attributes.

Keys and conditional processing

026 (387) The effective key definitions for a key space might be affected by conditional
processing (filtering). Processors SHOULD perform conditional processing before
determining the effective key definitions. However, processors might determine
effective key definitions before filtering. Consequently, different processors might
produce different effective bindings for the same map when there are key
definitions that might be filtered out based on their filtering attributes.

Note In order to retain backwards compatibility with DITA 1.0 and 1.1, the specification does not
mandate a processing order for different DITA features. This makes it technically possible to
determine an effective key definition, resolve references to that key definition, and then filter
out the definition. However, the preferred approach is to take conditional processing into
account when resolving keys, so that key definitions which are excluded by processing are
not used in resolving key references.

Reusing a topic in multiple key scopes

027 (387) If a topic that contains key references is reused in multiple key scopes within a
given root map such that its references resolve differently in each use context,
processors MUST produce multiple copies of the source topic in resolved output for
each distinct set of effective key definitions that are referenced by the topic.

In such cases, authors can use <resourceid> within topic references to specify distinct anchor
components for each instance of the topic.

with the @appid-role attribute set to "deliverable-anchor" to specify different source URIs for each
reference to a topic.

Error conditions

028 (387) If a referencing element contains a key reference with an undefined key, it is
processed as if there were no key reference, and the value of the @href attribute is
used as the reference. If the @href attribute is not specified, the element is not

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 110 of 471

treated as a navigation link. If it is an error for the element to be empty, an
implementation MAY give an error message; it also MAY recover from this error
condition by leaving the key reference element empty.

6.4.10 Processing key references for navigation links and images
Keys can be used to create or redirect links and cross references. Keys also can be used to address
resources such as images or videos. This topic explains how to evaluate key references on links and
cross references to determine a link target.

When a key definition is bound to a resource that is addressed by the @href or @keyref attributes, and
does not specify "none" for the @linking attribute, all references to that key definition become links to
the bound resource. When a key definition is not bound to a resource or specifies "none" for the
@linking attribute, references to that key definition do not become links.

When a key definition has no @href value and no @keyref value, references to that key will not result in
a link, even if they do contain an @href attribute of their own. If the key definition also does not contain a
<topicmeta> subelement, empty elements that refer to the key (such as <link keyref="a"/> or
<xref keyref="a" href="fallback.dita"/>) are ignored.

The <object> element has an additional key-referencing attribute named @datakeyref. Key names in
this attribute are resolved using the same processing that is described for the normal @keyref attribute.

6.4.11 Processing key references on <topicref> elements
While <topicref> elements are used to define keys, they also can reference keys that are defined
elsewhere. This topic explains how to evaluate key references on <topicref> elements and its
specializations.

Determining the effective resource

029
(387)

For topic references that use the @keyref attribute, the effective resource
bound to the <topicref> element is determined by resolving all
intermediate key references. Each key reference is resolved either to a
resource addressed directly by URI reference in an @href attribute, or to
no resource. Processors MAY impose reasonable limits on the number of
intermediate key references that they will resolve. Processors SHOULD
support at least three levels of key references.

Note This rule applies to all topic references, including those that define keys. The effective
bound resource for a key definition that uses the @keyref attribute cannot be
determined until the key space has been constructed.

Combining metadata

Content from a key-defining element cascades to the key-referencing element following the rules for
combining metadata between maps and other maps and between maps and topics.

The combined attributes and content cascade from one map to another or from a map to a topic, but
this is controlled by existing rules for cascading, which are not affected by the use of key references.

If, in addition to the @keys attribute, a key definition specifies a @keyref attribute that can be resolved
after the key resolution context for the key definition has been determined, the resources bound to the
referenced key definition take precedence.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 111 of 471

6.4.12 Processing key references to generate text or link text
Variable text can be specified by key definitions. Processors determine the effective text by retrieving the
content of elements in a specific sequence.

Empty elements

Empty elements that specify a key reference might get their effective content from the referenced key
definitions. For the purpose of determining variable text, empty elements are defined as elements
that meet the following criteria:

• Have no text content, including white space
• Have no sub-elements
• Have no attributes that would be used as text content

Key definitions with child <topicmeta> elements

When an empty element references a key definition that has a child <topicmeta> element, content
from that <topicmeta> element is used to determine the effective content of the referencing
element. Effective content from the key definition becomes the element content, with the following
exceptions:

• For empty 

9.3.2.2 <cite>
A citation is the name or the title of a bibliographic resource, for example, a document, online article, or
instructional video.

Rendering expectations
The content of the <cite>element is typically rendered in a way that distinguishes it from the
surrounding text.

Example
The following code sample shows how the <cite> element can be used to mark up the title of an article:

<p>The online article <cite>Specialization in the Darwin Information Typing
Architecture</cite> provides a detailed explanation of how to define new
topic types.</p>

9.3.2.3 <dd>
The definition description is the definition for an item in a definition list entry.

Attributes
The following attributes are available on this element: universal attributes (362).

Example
See <dl> (218).

9.3.2.4 <ddhd>
A definition heading is an optional heading or title for descriptions or definitions in a definition list.

Attributes
The following attributes are available on this element: universal attributes (362).

Example
See <dlhead> (219).

9.3.2.5 <desc>
A description is a statement that describes or contains additional information about an object.

Usage information
The following list outlines common uses of the <desc> element:

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 216 of 471

<table> and <fig>
Provides more information than can be contained in the title

<xref> and <link>
Provides a description of the target

<object>
Provides alternate content to use when the context does not permit the object to be displayed

Rendering expectations

067 (391) When used in conjunction with <fig> or <table> elements, processors SHOULD
consider the content of <desc> elements to be part of the content flow.

When used in conjunction with <xref> or <link> elements, processors often
render the content of <desc> elements as hover help or other forms of link preview.

Attributes
The following attributes are available on this element: universal attributes (362).

Examples
This section contains examples of how the <desc> element can be used.

Figure 91: Description of a figure

In the following code sample, the <figure> element contains a reference to an image of a famous
painting by Leonardo da Vinci. The <title> element provides the name of the painting, while the
<desc> element contains information about when the portrait is thought to have been painted.

<fig>
 <title>Mona Lisa</title>
 <desc>Circa 1503–06, perhaps continuing until 1517</desc>
 <image href="mona-lisa.jpg">
 <alt>Photograph of Mona Lisa painting</alt>
 </image>
</fig>

Figure 92: Description of a cross reference

In the following code sample, the <link> element contains a <desc> element. Some processors might
render the content of the <desc> element as hover help.

<link keyref="dita-13-02">
 <linktext>DITA 1.3 Errata 02</linktext>
 <desc>Final errata version of DITA 1.3, published 19 June 2018</desc>
</link>

9.3.2.6 <div>
A division is a grouping of contiguous content within a topic. There is no additional semantic meaning.

Usage information
The <div> element is useful primarily for reuse and as a specialization base.

Attributes
The following attributes are available on this element: universal attributes (362).

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 217 of 471

Example
In the following code sample, a <div> element is used to organize several elements together so that they
can be referenced by @conref or @conkeyref:

<div id="rendered-table">
 <p>The following screen capture shows one way the code sample might be rendered:</p>
 <image keyref="rendered-table" placement="break"/>
</div>

Without using a <div> element, the content could not be grouped for content referencing since the start
and end elements are of different types.

9.3.2.7 <dl>
A definition list is a list of items and their corresponding definitions.

Rendering expectations
A definition list is typically rendered in the following way:

• The definition term is located against the starting margin of the page or column.
• The definition description is indented. It is located either on the same line as the definition term, or

it is placed on the next line.
• The optional header content is located on a line before the definition list entries.

Attributes
The following attributes are available on this element: universal attributes (362) and @compact (371).

Example
The following code sample shows how a definition list can be used to describe the message levels that
are generated by a monitoring application. The @compact attribute instructs processors to tighten the
vertical spacing.

<dl compact="yes">
 <dlentry>
 <dt>Warning</dt>
 <dd>Problems were detected, but the software will continue to monitor activity.</dd>
 </dlentry>
 <dlentry>
 <dt>Error</dt>
 <dd>Problems were detected, and the software is in danger of shutting down.</dd>
 </dlentry>
 <dlentry>
 <dt>Severe</dt>
 <dd>Monitoring activity has ceased.</dd>
 </dlentry>
</dl>

9.3.2.8 <dlentry>
A definition list entry is a group within a definition list. It contains an item and its definitions.

Attributes
The following attributes are available on this element: universal attributes (362).

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 218 of 471

Example
See <dl> (218).

9.3.2.9 <dlhead>
A definition list heading is a group that contains a heading for items and a heading for definitions within
the list.

Attributes
The following attributes are available on this element: universal attributes (362).

Example
The following code sample shows a definition list with a header:

<dl>
 <dlhead>
 <dthd>Image selection</dthd>
 <ddhd>Resulting information</ddhd>
 </dlhead>
 <dlentry>
 <dt>File Type</dt>
 <dd>The file extension of the image</dd>
 </dlentry>
 <dlentry>
 <dt>Image class</dt>
 <dd>Whether the image is raster, vector, or 3D</dd>
 </dlentry>
 <dlentry>
 <dt>Fonts</dt>
 <dd>Names of the fonts contained within a vector image</dd>
 </dlentry>
</dl>

Rendering of definition lists will vary by application and by display format.

9.3.2.10 <draft-comment>
A draft comment is content that is intended for review and discussion, such as questions, comments, and
notes to reviewers. This content is not intended to be included in production output.

Rendering expectations

068 (392) By default, processors SHOULD NOT render <draft-comment> elements.
Processors SHOULD provide a mechanism that causes the content of the
<draft-comment> element to be rendered in draft output only.

Attributes
The following attributes are available on this element: universal attributes (362) and the attributes defined
below.

@author
Designates the originator of the draft comment.

@disposition
Specifies the status of the draft comment.

@time
Specifies when the draft comment was created.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 219 of 471

For this element, the @translate attribute has a default value of "no".

Example
The following code samples shows how a content developer can use a <draft-comment> element to
pose a question to reviewers. Note that the @author and @time attributes are used to provide
information who created the draft comment and when it was created.

<draft-comment author="EBP" time="23 May 2017">
 <p>Where's the usage information for this section?</p>
</draft-comment>

Processors might render the information from the highlighted attributes at viewing or publishing time.
Authors might use the value of the @disposition attribute to track the work that remains to be done on
a content collection.

9.3.2.11 <dt>
A definition term is the item that is defined in a definition list entry.

Attributes
The following attributes are available on this element: universal attributes (362).

Example
See <dl> (218).

9.3.2.12 <dthd>
A definition term heading is an optional heading or title for the items in a definition list.

Attributes
The following attributes are available on this element: universal attributes (362).

Example
See <dlhead> (219).

9.3.2.13 <example>
An example illustrates the subject of the topic or a portion of the topic.

Usage information
For maximum flexibility in creating specializations, examples allow plain text as well as phrase and block
level elements. Because of the way XML grammars are defined within a DTD, any element that allows
plain text cannot restrict the order or frequency of other elements. As a result, the <example> element
allows <title> to appear anywhere as a child of <example>. However, the intent of the specification is
that <title> only be used once in any <example>, and when used, that it precede any other text or
element content.

Rendering expectations

069 (392) Processors SHOULD treat the presence of more than one <title> element in a
<example> element as an error.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 220 of 471

Attributes
The following attributes are available on this element: universal attributes (362).

Example
The following code sample shows an <example> element that contains a code block and a textual
explanation of it:

<section id="AddingRecord">
 <title>ADD</title>
 <p>New database records are created using the <cmdname>ADD</cmdname> command.</p>
 <example>
 <p>The following example illustrates the creation of a new record. All parameter settings
 are strictly optional.</p>
 <codeblock>01 OPTIONS ABC,ADD,DEF,HIJK,LMNO,AOW=25000,HF=2</codeblock>
 </example>
</section>

9.3.2.14 <fallback>
Fallback content is content to be presented when multimedia objects or included content cannot be
rendered.

Processing expectations
The contents of this element are displayed only when the media that is referenced by the containing
element cannot be displayed or viewed.

Attributes
The following attributes are available on this element: universal attributes (362).

Example
See <audio> (244) and <video> (248).

9.3.2.15 <fig>
A figure is a container for a variety of objects, including artwork, images, code samples, equations, and
tables.

Usage information
A <fig> element enables associating other elements, such as a title or description, with the contents of
the <fig> element.

Attributes
The following attributes are available on this element: display attributes (368) and universal attributes
(362).

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 221 of 471

Example
The following code sample shows how a <fig> element can associate a title and a description with an
image:

<fig>
 <title>The handshake</title>
 <desc>This image shows two hands clasped in a formal, business-like handshake.</desc>
 <image href="59j0p66.jpg">
 <alt>A handshake</alt>
 </image>
</fig>

9.3.2.16 <figgroup>
A figure group is a grouping of segments within a figure.

Usage information
The <figgroup> element is useful primarily as a base for complex specializations, such as nestable
groups of syntax within a syntax diagram. The <figgroup> element can nest. It can also contain
multiple cross-references, footnotes, and keywords.

Attributes
The following attributes are available on this element: universal attributes (362).

Example
For the most part, <figgroup> is intended to be used as a base for specialization. This example uses it
directly for purposes of illustration.

The following code sample shows how the <figgroup> can group content with associated metadata:

<fig>
 <title>Sample complex figure</title>
 <figgroup>
 <data name="MetaItem" value="13"/>
 <data name="MetaThing" value="31"/>
 <ph>These elements are grouped with associated metadata</ph>
 </figgroup>
</fig>

9.3.2.17 <fn>
A footnote is ancillary information that typically is rendered in the footer of a page or at the end of an
online article. Such content is usually inappropriate for inline inclusion.

Usage information
There are two types of footnotes: single-use footnote and use-by-reference footnote.

Single-use footnote
This is produced by a <fn> element that does not specify a value for the @id attribute.

Use-by-reference footnote
This is produced by a <fn> element that specifies a value for the @id attribute. It must be used in
conjunction with an <xref> element with @type set to "fn".

To reference a footnote that is located in another topic, the conref or conkeyref mechanism is used.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 222 of 471

Rendering expectations
The two footnote types typically produce different types of output:

Single-use footnote
When rendered, a superscript symbol (numeral or character) is produced at the location of the <fn>
element. The superscript symbol is hyperlinked to the content of the footnote, which is placed at the
bottom of a PDF page or the end of an online article. The superscript symbol can be specified by the
value of the @callout attribute. When no @callout value is specified, footnotes are typically
numbered.

Use-by-reference footnote
Nothing is rendered at the location of the <fn> element. The content of a use-by-reference footnote
is only rendered when it is referenced by an <xref> with the @type attribute set to "fn". If an
<xref> with the @type attribute set to "fn" is present, a superscript symbol is rendered at the
location of the <xref> element. Unless conref or conkeyref is used, the <fn> and <xref> must be
located in the same topic.

However, the details of footnote processing and formatting are implementation dependent. For example,
a tool that renders DITA as PDF might lack support for the @callout attribute, or footnotes might be
collected as end notes for certain types of publications.

Attributes
The following attributes are available on this element: universal attributes (362) and the attribute defined
below.

@callout
Specifies the character or character string that is used for the footnote link.

Examples
This section contains examples of how the <fn> element can be used.

Figure 93: An example of a single-use footnote

The following code sample shows a single-use footnote. It contains a simple <fn> element, with no @id
or @callout attribute.

<p>The memory storage capacity of the computer is 2 GB
<fn>A GB (gigabyte) is equal to 1000 million bytes</fn>
with error correcting support.</p>

When rendered, typically a superscript symbol is placed at the location of the <fn> element; this
superscript symbol is hyperlinked to the content of the <fn>, which is typically placed at the bottom of a
PDF page or the end of an online article. The type of symbol used is implementation specific.

The above code sample might produce the following output similar to the following:

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 223 of 471

Figure 94: An example of a single-use footnote with a @callout attribute

The following code sample shows a single-use footnote that uses a @callout attribute:

<p>The memory storage capacity of the computer is 2 GB
<fn callout="#">A GB (gigabyte) is equal to 1000 million bytes</fn>
with error correcting support.</p>

The rendered output is similar to that of the previous example, although processors that support it will
render the footnote symbol as # (hashtag).

Figure 95: A use-by-reference footnote

The following code sample shows use-by-reference footnotes. The <fn> elements have @id attributes,
and inline <xref> elements reference those <fn> elements:

<section>
 <fn id="dog-name">Fido</fn>
 <fn id="cat-name">Puss</fn>
 <fn id="llama-name">My llama</fn>
 <!-- ... -->
 <p>I like pets. At my house, I have
 a dog<xref href="#topic/dog-name" type="fn"/>,
 a cat<xref href="#topic/cat-name" type="fn"/>, and
 a llama<xref href="#topic/llama-name" type="fn"/>.
 </p>
</section>

The code sample might produce output similar to the following:

Figure 96: A single-use footnote that uses conref

The following code sample shows footnotes stored in a shared topic (footnotes.dita):

<!-- Content from footnotes.dita -->
<topic id="footnotes">
 <title>Shared topic...</title>
 <body>
 <bodydiv>
 <fn id="strunk">Elements of Style</fn>
 <fn id="DQTI">Developing Quality Technical Information, 2nd edition</fn>
 <!-- ... -->
 </bodydiv>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 224 of 471

 </body>
</topic>

To use those footnotes, authors conref them into the relevant topics:

<p>See the online resource<fn conref="footnotes.dita#footnotes/DQTI"/> for more
 information about how to assess the quality of technical documentation ...</p>

Figure 97: A use-by-reference footnote that uses conref

The following code sample shows a use-by-reference footnote that uses conref:

<topic id="evaluating-quality">
 <title>Evaluating documentation quality</title>
 <body>
 <bodydiv>
 <fn conref="footnotes.dita#footnotes/DQTI" id="dqti"/>
 </bodydiv>
 <!-- ... -->
 <p>See the online resource<xref="#./dqti" type="fn"/> for more
 information about how to assess the quality of technical documentation./p>
 <!-- ... -->
 </body>
<topic>

9.3.2.18 

9.3.2.19 <include>
Included content is a reference to non-DITA content outside the current document that will be rendered at
the location of the reference. The resource is specified using either a URI or a key reference. Processing
expectations for the referenced data can also be specified.

Usage information
The <include> element is intended as a base for specialization and for the following use cases:

• The transclusion of non-DITA XML within <foreign> element using parse="xml"
• The transclusion of preformatted textual content within <pre> element using parse="text"
• The transclusion of plain-text prose within DITA elements using parse="text"

In addition, processors can support additional values for the @parse attribute.

For example, the <include> element can be specialized to an element such as <coderef> as a way to
include preformatted sample programming code.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 226 of 471

The <include> element is not intended to reference DITA content. Use @conref or @conkeyref to
reuse DITA content.

Processing expectations
The <include> element instructs processors to insert the contents of the referenced resource at the
location of the <include> element. If the content is unavailable to the processor or cannot be processed
using the specified @parse value, the contents of the <fallback> element, if any, are presented
instead.

071 (392) Processors SHOULD support the @parse (375) values "text" and "xml".

072 (392) Processors SHOULD detect the encoding of the referenced document based on
the rules described for the @encoding (371) attribute.

Attributes
The following attributes are available on this element: inclusion attributes (368), link-relationship
attributes (368), universal attributes (362), and @keyref (373).

Examples
For the most part, <include> is intended to be used as a base for specialization. The following
examples use it directly for purposes of illustration.

Figure 98: Inclusion of XML markup other than SVG or MathML

In the following code sample, the <include> element references a tag library descriptor file:

<fig>
 <title>JSP tag library elements and attributes</title>
 <foreign outputclass="tld">
 <include href="../src/main/webapp/WEB-INF/jsp-tag-library.tld"
 parse="xml" format="tld"/>
 </foreign>
</fig>

Figure 99: Inclusion of README text into a DITA topic, with fallback

In the following code sample, a README text file is referenced in order to reuse a list of changes to a set
of source code:

<topic id="readme">
 <title>Summary of changes</title>
 <shortdesc>This topic describes changes in the project source code.</shortdesc>
 <body>
 <section>
 <include href="../src/README.txt" parse="text" encoding="UTF-8">
 <fallback>See README.txt in the source package for a list of changes.</fallback>
 </include>
 </section>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 227 of 471

 </body>
</topic>

Figure 100: Inclusion of preformatted text

In the following code sample, the <include> element references a JSON file:

<pre>
 <include href="../src/config.json" format="json" parse="text" encoding="UTF-8"/>
</pre>

Figure 101: Proprietary vendor handling for CSV tables

In the following code sample, the <include> element specifies a proprietary @parse value that instructs
a processor how to render a comma-separated data set within the figure:

<fig>
 <title>Data Table</title>
 <include href="data.csv" encoding="UTF-8"
 parse="http://www.example.com/dita/includeParsers/csv-to-simpletable"/>
</fig>

9.3.2.20 <keyword>
A keyword is text or a token that has a unique value, such as a product name or unit of reusable text.

Processing expectations
When used within the <keywords> element, the content of a <keyword> element is considered to be
metadata and should be processed as appropriate for the given output medium.

Elements that are specialized from the <keyword> element might have extended processing, such as
specific formatting or automatic indexing.

Attributes
The following attributes are available on this element: universal attributes (362) and @keyref (373).

Examples
This section contains examples of how the <keyword> element can be used.

Figure 102: <keyword> element used to store a product name

In the following code sample, the <keyword> element holds a product name that can be referenced
using content reference (conref) or content key reference (conkeyref):

<keyword id="acme-bird-feeder">ACME Bird Feeder</keyword>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 228 of 471

To enable referencing variable text using @keyref, store the product name in a <keytext> element.

Figure 103: <keyword> element referencing a product name

In the following example, the <keyword> element references a product name using @conkeyref:

<p>To fill the <keyword conkeyref="productnames/acme-bird-feeder"/>, unscrew the top ...</p>

Figure 104: <keyword> element as metadata

In the following code sample, "Big data" is specified as metadata that applies to the topic:

<prolog>
 <metadata>
 <keywords>
 <keyword>Big data</keyword>
 </keywords>
 </metadata>
</prolog>

9.3.2.21
A list item is an item in either an ordered or unordered list.

Attributes
The following attributes are available on this element: universal attributes (362).

Example
See (235) or (242).

9.3.2.22 <lines>
Lines are lines of text where white space is significant. The <lines> element can be used to represent
dialogs, poetry, or other text fragments where line breaks are significant.

Rendering expectations

073 (392) Processors SHOULD preserve the line breaks and spaces that are present in the
content of a <lines> element.

The contents of the <lines> element is typically rendered in a non-monospaced font.

Attributes
The following attributes are available on this element: display attributes (368), universal attributes (362),
and @xml:space (379).

Example
In the following code sample, a <lines> element contains the text of [Buffalo Bill 's], a poem by e. e.
cummings:

<lines>Buffalo Bill ’s
defunct
 who used to
 ride a watersmooth-silver
 stallion
and break onetwothreefourfive pigeonsjustlikethat

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 229 of 471

 Jesus

he was a handsome man
 and what i want to know is
how do you like your blue-eyed boy
Mister Death</lines>

9.3.2.23 <longdescref>
A long description reference is a reference to a textual description of a graphic or object. This is typically
used to provide an extended description when the graphic or object is too complicated to describe with
alternate text.

Attributes
The following attributes are available on this element: link-relationship attributes (368), universal
attributes (362), and @keyref (373).

Examples
This section contains examples of how the <longdescref> element can be used.

Figure 105: <longdescref> which references a local DITA description

In the following code sample, the <longdescref> references a detailed image description that is stored
in a DITA topic:

<image href="llama.jpg">
 <alt>Llama picture</alt>
 <longdescref href="my-pet-llama.dita"/>
</image>

Figure 106: <longdescref> which references an external description

In this code sample, the long description is stored remotely, on a external Web site:

<image href="puffin.jpg">
 <alt>Puffin pigure</alt>
 <longdescref href="http://www.example.org/birds/puffin.html"
 scope="external"
 format="html"/>
</image>

9.3.2.24 <lq>
A long quotation is a quotation that contains one or more paragraphs. The title and source of the
document that is being quoted can be specified.

Rendering expectations
The contents of the <lq> element is typically rendered as an indented block.

Attributes
The following attributes are available on this element: universal attributes (362) and @keyref (373).

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 230 of 471

Example
The following code sample contains a quotation. The <cite> attribute specifies the title of the document
that is quoted.

<p>This is the first line of the address that Abraham Lincoln delivered
on November 19, 1863 for the dedication of the cemetery at Gettysburg, Pennsylvania.</p>
<lq>Four score and seven years ago our fathers brought forth on this continent
a new nation, conceived in liberty, and dedicated to the proposition that all men
are created equal. <cite>Gettysburg address</cite>
</lq>

9.3.2.25 <note>
A note is information that expands on or calls attention to a particular point.

Usage information
The nature of a note (for example, caution, danger, or warning) is indicated through the values selected
for the @type attribute.

The values "danger", "notice", and "warning" have meanings that are based on ANSI Z535 and ISO 3864
regulations.

If @type is set to "other", the value of the @othertype attribute can be used as a label for the note.
Many processors will require additional information on how to process the value.

Rendering expectations

074 (392) Processors SHOULD render a label for notes. The content of the label depends on
the values of the @type attribute.

A note is typically rendered in a way that stands out from the surrounding content.

Attributes
The following attributes are available on this element: universal attributes (362) and the attributes defined
below.

@othertype
Specifies an alternate note type. This value is used as the user-provided note label when the @type
attribute value is set to "other".

@type
Specifies the type of a note. This differs from the @type attribute on many other DITA elements. The
following are the allowable values:

• "attention"
• "caution"
• "danger"
• "important"
• "note"
• "notice"
• "other"
• "remember"
• "restriction"
• "tip"

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 231 of 471

• "trouble"
• "warning"
• "-dita-use-conref-target"

Example
The following code sample shows a <note> with @type set to "tip":

<note type="tip">Thinking of a seashore, green meadow, or cool
mountain overlook can help you to relax and be more
patient.</note>

9.3.2.26 <object>
The DITA <object> element corresponds to the HTML <object> element, and the attribute semantics
derive from the HTML definitions. Because of this, the @type attribute on <object> differs from the
@type attribute on many other DITA elements.

Usage information
The <object> element enables authors to include animated images, applets, plug-ins, video clips, and
other multimedia objects in a topic.

Rendering expectations

075 (392) Processors SHOULD scale the object when values are provided for the @height
and @width attributes. The following expectations apply:

• If a height value is specified and no width value is specified, processors
SHOULD scale the width by the same factor as the height.

• If a width value is specified and no height value is specified, processors
SHOULD scale the height by the same factor as the width.

• If both a height value and width value are specified, implementations MAY
ignore one of the two values when they are unable to scale to each
direction using different factors.

076 (392) When an object cannot be rendered in a meaningful way, processors SHOULD
present the contents of the <fallback> element, if it is present.

Attributes
The following attributes are available on this element: universal attributes (362) and the attributes defined
below.

@data
Contains a reference to the location of an object's data. If this attribute is a relative URL, it is
specified relative to the document containing the <object> element. If this attribute is set, the
@type attribute should also be set.

@datakeyref
Provides a key reference to the object. When specified and the key is resolvable, the key-provided
URI is used. A key that has no associated resource, only link text, is considered to be unresolved. If
@data is specified, it is used as a fallback when the key cannot be resolved to a resource.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 232 of 471

@height
Specifies the vertical dimension for the resulting display. The value of this attribute is a real number
expressed in decimal notation, optionally followed by a unit of measure. The following units of
measurement are supported: cm, em, in, mm, pc, pt, and px (centimeters, ems, inches, millimeters,
picas, points, and pixels, respectively). The default unit is px (pixels). Possible values include:"5",
"5in", and "10.5cm".

@name
Defines a unique name for the object.

@tabindex
Specifies the position of the object in tabbing order.

@type
Indicates the content type (MIME type) for the data specified by the @data or @datakeyref
attribute. This attribute should be set when the @data attribute is set to avoid loading unsupported
content types. Note that this differs from the @type attribute on many other DITA elements (it
specifies a MIME type rather than a content type). If @type is not specified, the effective type value
for the key named by the @datakeyref attribute is used as the this attribute's value.

@usemap
Indicates that a client-side image map is to be used. An image map specifies active geometric
regions of an included object and assigns a link to each region. When a link is selected, a document
might be retrieved or a program might run on the server.

@width
Specifies the horizontal dimension for the resulting display. The value of this attribute is a real
number expressed in decimal notation, optionally followed by a unit of measure. The following units
of measurement are supported: cm, em, in, mm, pc, pt, and px (centimeters, ems, inches,
millimeters, picas, points, and pixels, respectively). The default unit is px (pixels). Possible values
include:"5", "5in", and "10.5cm".

Example
This section contains examples of how the <object> element can be used.

Figure 107: Referencing a web page for display in an HTML inline frame (iframe)

The following code sample shows how an <object> element can be used to render a web page in an
inline frame. It assumes that the processing engine uses the outputclass="iframe" directive.

<object type="text/html"
 data="https://www.openstreetmap.org/export/embed.html?
bbox=-0.004017949104309083%2C51.47612752641776
 %2C0.00030577182769775396
 %2C51.478569861898606
 &layer=mapnik"
 width="800"
 height="600"
 id="map-uk-greenwich"
 outputclass="iframe">
 <desc>Greenwich, England</desc>
 <fallback><xref format="html" scope="external"
 href="https://www.openstreetmap.org/export/embed.html?
bbox=-0.004017949104309083%2C51.47612752641776
 %2C0.00030577182769775396
 %2C51.478569861898606
 &layer=mapnik"
 /></fallback>
</object>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 233 of 471

The above code might generate the following HTML:

<!DOCTYPE html>
<html>
 <head>
 <title>Test of Iframe</title>
 </head>
 <body>
 <p>Iframe:</p>
 <iframe src="https://www.openstreetmap.org/export/embed.html?
bbox=-0.004017949104309083%2C51.47612752641776
 %2C0.00030577182769775396
 %2C51.478569861898606
 &layer=mapnik"
 >Street map</iframe>
 </body>
</html>

Figure 108: Object with reference to video using key reference on the <param> elements

The following code sample shows how key definitions can be used to reference supporting resources for
an <object>:

<object id="E5123_026.mp4" width="300" height="300">
 <fallback>Media not available.</fallback>
 <param name="poster" keyref="E5123_026_poster" />
 <param name="source" keyref="E5123_026_video" />
</object>

In this scenario, the keys could be defined as follows:

<map>
 <!-- ... -->
 <keydef keys="E5123_026_poster"
 href="../images/E5123_026_poster.png"
 type="video/mp4"/>
 <keydef keys="E5123_026_video"
 href="../media/E5123_026_poster.mp4"
 type="video/mp4"/>
 <!-- ... -->
</map>

Figure 109: Object with indirect reference to a flash file

The following code sample shows how key definitions can be used to reference the main content for an
<object>:

<object id="cutkey370"
 datakeyref="cutkey370"
 height="280"
 width="370">
 <desc>Video illustration of how to cut a key</desc>
 <fallback>Media not available.</fallback>
 <param name="movie" keyref="cutkey370"/>
 <param name="quality" value="high"/>
 <param name="bgcolor" value="#FFFFFF"/>
</object>

In this scenario, the keys could be defined as follows:

<map>
 <!-- ... -->

 <!-- Using @scope="external" here because the referenced URL is external. -->
 <keydef keys="cutkey370"
 href="https://www.example.com/cutkey370.swf"
 type="application/x-shockwave-flash"

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 234 of 471

 format="swf"
 scope="external" />

 <!-- ... -->
</map>

9.3.2.27
An ordered list is a list of items that are sorted by sequence or order of importance.

Rendering expectation
List items are typically indicated by numbers or alphabetical characters.

Attributes
The following attributes are available on this element: universal attributes (362) and @compact (371).

Example
The following code sample shows the use of an ordered list:

<p>Here is a list of the five longest-living people who were born in the 19th century:</p>

 Jeanne Calment (1875-1997)
 Sarah Knauss (1880-1999)
 Marie-Louise Meilleur (1880-1998)
 Emma Morano (1899-2017)
 Misao Okawa (1898-2015)

<p>Note that systematic verification has only been practised in recent years and only
 in certain parts of the world.</p>

9.3.2.28 <p>
A paragraph is a group of related sentences that support a central idea.

Attributes
The following attributes are available on this element: universal attributes (362).

Example
The following code sample contains a paragraph:

<p>A paragraph is a group of related sentences that support a central
idea. Paragraphs typically consist of three parts: a topic sentence, body sentences,
and a concluding or bridging sentence.</p>

9.3.2.29 <param>
The <param> (parameter) element specifies a set of values that might be required by an <object> at
runtime.

Usage information
Any number of <param> elements might appear in the content of an <object> in any order, but must be
placed at the start of the content of the enclosing object. This element is comparable to the HMTL

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 235 of 471

<param> element, and the attribute semantics derive from their HTML definitions. For example, the
@type attribute differs from the @type attribute on many other DITA elements.

Processing expectations
The @keyref attribute on <param> has the following expectations:

1. When the key specified by @keyref is resolvable and has an associated URI, that URI is used as
the value of this element (overriding @value, if that is specified).

2. When the key specified by @keyref is resolvable and has no associated resource (only link text),
the @keyref attribute is considered to be unresolvable for this element. If @value is specified, it
is used as a fallback.

3. When the key specified by @keyref is not resolvable, the value of the @value attribute is used
as a fallback target for the <param> element.

Attributes
The following attributes are available on this element: universal attributes (362) and the attributes defined
below.

@keyref
Specifies a key reference to the thing the parameter references.

@name (REQUIRED)
Specifies the name of the parameter.

@value
Specifies the value of a run-time parameter that is described by the @name attribute.

Example
See <object> (233).

9.3.2.30 <ph>
A phrase is a small group of words that stand together as a unit, typically forming a component of a
clause.

Usage information
The <ph> element often is used to enclose a phrase for reuse or conditional processing.

The <ph> element frequently is used as a specialization base, to create phrase-level markup that can
provide additional semantic meaning or trigger specific processing or formatting. For example, all
highlighting domain elements are specializations of <ph>.

Attributes
The following attributes are available on this element: universal attributes (362) and @keyref (373).

Example
The following code sample shows <ph> elements that are used for conditional processing:

<p>The Style menu is the <ph product="Software1000"/>third item</ph>
<ph product="Software9000"/>fourth item</ph> from the left on the menu bar.</p>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 236 of 471

9.3.2.31 <pre>
Preformatted text is text that contains line breaks and spaces that are intended to be preserved at
publication time.

Usage information
The <pre> element is often used for ASCII diagrams and code samples. It is the specialization base for
the @codeblock element in the Technical Content edition.

Rendering expectations

077 (392) Processors SHOULD preserve the line breaks and spaces that are present in the
content of a <pre> element.

The contents of the <codeblock> element is typically rendered in a monospaced
font.

Attributes
The following attributes are available on this element: display attributes (368), universal attributes (362),
and @xml:space (379).

Example
The following code sample shows preformatted text that contains white space and line breaks. When the
following code sample is published, the white space and line breaks are preserved.

<pre>
 MEMO: programming team fun day
Remember to bring a kite, softball glove, or other favorite
outdoor accessory to tomorrow's fun day outing at Zilker Park.
Volunteers needed for the dunking booth.
</pre>

9.3.2.32 <q>
A quotation is a small group of words that is taken from a text or speech and repeated by someone other
than the original author or speaker.

Rendering expectations
Processors add appropriate styling, such as locale-specific quotation marks, around the contents of the
<q> element and render it inline.

Attributes
The following attributes are available on this element: universal attributes (362).

Example
In the following code sample, the <q> element contains a quotation. Note that no quotation marks are
included; locale-specific quotation marks will be generated during processing.

<p>
George said, <q>Disengage the power supply before servicing the unit.</q>
</p>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 237 of 471

9.3.2.33 <section>
A section is an organizational division in a topic. Sections are used to organize subsets of information that
are directly related to the topic.

Usage information
Multiple sections within a single topic do not represent a hierarchy, but rather peer divisions of that topic.
Sections cannot be nested. Sections can have titles.

Note For maximum flexibility in creating specializations, sections allow plain text as well as phrase
and block level elements. Because of the way XML grammars are defined within a DTD, any
element that allows plain text cannot restrict the order or frequency of other elements. As a
result, the <section> element allows <title> to appear anywhere as a child of
<section>. However, the intent of the specification is that <title> only be used once in
any <section>, and when used, that it precede any other text or element content.

Rendering expectations

078 (392) Processors SHOULD treat the presence of more than one <title> element in a
<section> element as an error.

Attributes
The following attributes are available on this element: universal attributes (362).

Example
The following code sample shows how element-reference topics in the DITA specification use titled
sections to provide a consistent structure for grouping information:

<reference id="p" xml:lang="en-us">
 <title><xmlelement>p</xmlelement></title>
 <shortdesc conkeyref="library-short-descriptions/p"/>
 <refbody>
 <section><title>Usage information</title>
 <p>...</p>
 </section>
 <section><title>Rendering expectations</title>
 <p>...</p>
 </section>
 <section><title>Processing expectations</title>
 <p>...</p>
 </section>
 <section><title>Specialization hierarchy</title>
 <p>...</p>
 </section>
 <section><title>Attributes</title>
 <p>...</p>
 </section>
 <example><title>Example</title>
 <p>...</p>
 </example>
 </refbody>
</reference>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 238 of 471

9.3.2.34 <sl>
A simple list is a list that contains a few items of short, phrase-like content.

Rendering expectations
A simple list is typically rendered in the following way:

• The content of each simple list item is placed on a separate line.
• The lines are not distinguished by numbers, bullets, or icons.

Attributes
The following attributes are available on this element: universal attributes (362) and @compact (371).

Example
The following code sample shows how a simple list could be used in a topic that discusses related
modules:

<section>
 <title>Messages</title>
 <p>Messages from the ags_open module are identical with messages from:</p>
 <sl>
 <sli>ags_read</sli>
 <sli>ags_write</sli>
 <sli>ags_close</sli>
 </sl>
</section>

9.3.2.35 <sli>
A simple list item is a component of a simple list. A simple list item contains a brief phrase or text content,
adequate for describing package contents, for example.

Attributes
The following attributes are available on this element: universal attributes (362).

Example
See <sl> (239).

9.3.2.36 <term>
A term is a word or phrase that has specific meanings in certain contexts. It might have or require
extended definitions or explanations.

Usage information
The @keyref attribute can be used in conjunction with the <term> element to accomplish the following:

• Supply the text content for the <term> element
• Associate a term with a resource, typically a definition of the term

Attributes
The following attributes are available on this element: universal attributes (362) and @keyref (373).

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 239 of 471

Example
The following code samples shows how the <term> element can be used

Figure 110: Simple use of the <term> element

In the following code sample, the <term> element is used simply to identify that "reference
implementation" is a term:

<p>A <term>reference implementation</term> of DITA implements the standard,
fallback behaviors intended for DITA elements.</p>

Figure 111: The <term> element used to reference an external definition

In the following code sample, the <term> element is used to reference an external resource that defines
the term:

<p>A <term keyref="reference-implementation">reference implementation</term> of DITA
implements the standard, fallback behaviors intended for DITA elements.</p>

When combined with the following key definition, processors might render the phrase "reference
implementation" as a hyperlink to the associated Wikipedia page:

<map>
 <title>Information about DITA</title>
 <keydef keys="reference-implementation"
 href="https://en.wikipedia.org/wiki/Reference_implementation"
 format="html" scope="external"/>
 <!-- ... -->
</map>

9.3.2.37 <text>
The <text> element is a container for text. It does not have any associated semantics.

Usage information
The <text> element is primarily used as a base for specialization or to enable reuse. The <text>
element can contain only text or nested <text> elements.

Attributes
The following attributes are available on this element: universal attributes (362).

Example
In the following code sample, the <text> element is used to contain text that is intended to be reused:

<p>This an example of <text id="reuse">Text that is reusable</text>,
 with no extra semantics attached to the text.</p>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 240 of 471

9.3.2.38 <tm>
A trademark is a term or phrase that is trademarked. Trademarks include registered trademarks, service
marks, slogans, and logos.

Usage information
The business rules for indicating and displaying trademarks differ from company to company. These
business rules can be enforced by either authoring policy or processing.

Attributes
The following attributes are available on this element: universal attributes (362) and the attributes defined
below.

@tmclass
Specifies the classification of the trademark. This can be used to differentiate different groupings of
trademarks.

@tmowner
Specifies the trademark owner, for example "OASIS".

@tmtype (REQUIRED)
Specifies the trademark type. Allowable values are:

tm
Trademark

reg
Registered trademark

service
Service mark

-dita-use-conref-target
See 7.3.6 Using the -dita-use-conref-target value (149) for more information.

@trademark
Specifies the trademarked term.

Example
The following code sample shows how a company might use the <tm> element:

<p>The advantages of using the
 <tm trademark="Acme" tmtype="reg">Acme</tm>
 <tm trademark="SuperFancyWidget" tmtype="tm">SuperFancyWidget</tm>
 are well known to Bugs Bunny fans.</p>

9.3.2.39
An unordered list is a list in which the order of items is not significant.

Rendering expectation
List items are typically indicated by bullets or dashes.

Attributes
The following attributes are available on this element: universal attributes (362) and @compact (371).

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 241 of 471

Example
The following code sample shows a list in which the order of items is unimportant:

<p>Here are the countries that I have visited:</p>

 Germany
 France
 Japan
 Mexico

9.3.2.40 <xref>
A cross reference is an inline link. A cross reference can link to a different location within the current topic,
another topic, a specific location in another topic, or an external resource such as a PDF or web page.

Attributes
The following attributes are available on this element: link-relationship attributes (368), universal
attributes (362), and @keyref (373).

Examples
This section contains examples of how the <xref> element can be used.

Figure 112: Cross reference to another topic, without link text

The following code sample shows a cross reference to another topic. Link text is not provided. Processor
typically use the topic title as the link text.

<p>Background information about DITA is provided in
<xref href="overview-of-dita.dita"/>.</p>

The same cross reference could be created using @keyref instead of @href. Using @keyref allows the
link to be redirected to different resources when the topic is used in different contexts.

Figure 113: Cross references with link text specified

The following code sample shows a cross reference that specifies link text:

<p>While this set of tutorials gives several simple examples of
<xref keyref="markup-examples">common DITA features</xref>, a comprehensive
list of DITA features is available in the DITA specification
<xref keyref="dita-conformance">conformance clause</xref>.</p>

Figure 114: Cross reference to an external ressource

The following code sample shows a cross reference to a web page:

<xref href="https://www.example.com/docview.wss?rs=757"
scope="external" format="html">Part number SSVNX5/>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 242 of 471

9.3.3 Multimedia elements
The multimedia elements are used to reference audio or video content. The elements in this domain are
modeled on the HTML5 <audio> and <video> elements.

9.3.3.1 <audio>
Audio is sound that the human ear is capable of hearing.

Usage information
The <audio> element is modeled on the HTML5 <audio> element.

An audio resource can be referenced by @href, @keyref, and nested <media-source> elements.

Playback behaviors such as auto-playing, looping, and muting are determined by attributes. When not
specified, the default behavior is determined by the user agent that is used to present the media.

Rendering expectations

079 (392) When an audio resource cannot be rendered in a meaningful way, processors
SHOULD present the contents of the <fallback> element, if it is present.

Attributes
The following attributes are available on this element: universal attributes (362), @format (372), @href
(373), @keyref (373), @scope (378), and the attributes defined below.

For this element, the following considerations apply:

• The @format attribute specifies the MIME type for the resource. This attribute enables
processors to avoid loading unsupported resources. If @format is not specified and @keyref is
specified, the effective type for the key named by the @keyref attribute is used as the value. If an
explicit @format is not specified on either the <audio> element or key definition, processors can
use other means, such as the URI file extension, to determine the effective MIME type of the
resource.

• The @href attribute specifies the absolute or relative URI of the audio resource. If @href is
specified, also specify @format.

@autoplay
Specifies whether the resource automatically plays when it is presented. The following values are
recognized: "true", "false", and "-dita-use-conref-target ". The default value is "true".

@controls
Specifies whether the presentation of the resource includes user interface controls. The following
values are recognized: "true", "false", and "-dita-use-conref-target ". The default value is "true".

@loop
Specifies whether the resource loops when played. The following values are recognized: "true",
"false", and "-dita-use-conref-target ". The default value is "true".

@muted
Specifies whether the resource is muted. The following values are recognized: "true", "false", and "-
dita-use-conref-target ". The default value is "true".

@tabindex
Specifies whether the audio resource can be focused and where it participates in sequential
keyboard navigation. See @tabindex in the HTML specification (WHATWG version).

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 243 of 471

https://html.spec.whatwg.org/dev/interaction.html#the-tabindex-attribute

Examples
Figure 115: An <audio> element that uses direct addressing

In the following code sample, an audio resource is referenced using direct addressing. The @type
attribute specifies the MIME type of the audio resource.

<audio href="message.mp3" format="audio/mp3"/>

Figure 116: An <audio> element that uses indirect addressing

In the following code sample, the audio resource is addressed using a key reference:

<audio keyref="message"/>

Both the URI and the MIME type are specified on the key definition:

<keydef keys="message" href="message.mp3" format="audio/mp3"/>

Figure 117: An <audio> element with multiple formats

In the following code sample, <media-source> elements are used to specify the different audio formats
that are available.

<audio>
 <media-source href="message.mp3" format="audio/mp3"/>
 <media-source href="message.wav" format="audio/wav"/>
</audio>

Figure 118: Example of a complex <audio> element

The following code sample specifies an audio resource and defines multiple presentational details. It also
provides fallback behavior for when the audio resource cannot be rendered.

<audio autoplay="true"
 controls="true"
 loop="false"
 muted="false">
 <desc>A sound file narrating the performance of this procedure.</desc>
 <fallback>The audio track walking through this procedure is not available.</fallback>
 <!-- Multiple formats, with URI and MIME type referenced using a key -->
 <media-source keyref="walkthrough-mp3"/>
 <media-source keyref="walkthrough-wav"/>
</audio>

9.3.3.2 <media-source>
The media source specifies the location of an audio or video resource.

Usage information
The media source is modeled on the <source> element used in HTML5 media elements.

Rendering expectations
When multiple <media-source> elements are present, the user agent evaluates them in document
order and selects the first resource that can be played.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 244 of 471

Attributes
The following attributes are available on this element: universal attributes (362), @format (372), @href
(373), @keyref (373), and @scope (378).

For this element, the @href attribute specifies the URI of the track resource.

Example
See <audio> (244) and <video> (248).

9.3.3.3 <media-track>
Media track settings specify the location of supplemental, text-based data for the referenced media, for
example, subtitles or descriptions.

Usage information
The media track settings are modeled on the <track> element used in HTML5 media elements. They
refer to track resources that use Web Video Text Track Format (WebVTT).

Attributes
The following attributes are available on this element: universal attributes (362), @format (372), @href
(373), @keyref (373), @scope (378), and the attributes defined below.

@kind
Specifies the usage for the track resource. This attribute is modeled on the @kind attribute on the
HTML5 <track> element, as described by the HTML specification, WHATWG version. The values
for this attribute are derived from the HTML5 standard:

captions
Transcription or translation of the dialogue, sound effects, relevant musical cues, and other
relevant audio information. This is intended for use when the soundtrack is unavailable, for
example, because it is muted or because the user is hard-of-hearing. This information is
rendered over the video and labeled as appropriate for hard-of-hearing users.

chapters
Chapter titles, which are intended to be used for navigating the media resource. The chapter
titles are rendered as an interactive list in the interface for the user agent.

descriptions
Textual descriptions of the video component of the media resource. This is intended for audio
synthesis when the visual component is unavailable, for example, because the user is
interacting with the application without a screen or because the user is blind. Descriptions are
synthesized as separate audio tracks.

metadata
Tracks intended for use from script. This metadata is not displayed by the user agent.

subtitles
Transcription or translation of the dialogue, suitable for when the sound is available but not
understood, for example, because the user does not understand the language of the soundtrack.
Subtitles are rendered over the video.

-dita-use-conref-target
See 7.3.6 Using the -dita-use-conref-target value (149) for more information.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 245 of 471

https://www.w3.org/TR/webvtt1/
https://html.spec.whatwg.org/dev/media.html#dom-TrackList-getKind-categories

@srclang
Specifies the language of the track resource.

For this element, the @href attribute specifies the URI of the track resource.

Example
See Examples (247) in the <video> topic.

9.3.3.4 <video>
A video is a recording of moving visual images.

Usage information
The <video> element is modeled on the HTML5 <video> element.

A video resource can be referenced by @href, @keyref, and nested <media-source> elements.

Playback behaviors such as auto-playing, looping, and muting are determined by attributes. When not
specified, the default behavior is determined by the user agent that is used to present the media.

Rendering expectations
The video resource typically is rendered in the main flow of the content.

080 (392) Processors SHOULD scale the video resource when values are provided for the
@height and @width attributes. The following expectations apply:

• If a height value is specified and no width value is specified, processors
SHOULD scale the width by the same factor as the height.

• If a width value is specified and no height value is specified, processors
SHOULD scale the height by the same factor as the width.

• If both a height value and width value are specified, implementations MAY
ignore one of the two values when they are unable to scale to each
direction using different factors.

081 (393) When a video resource cannot be rendered in a meaningful way, processors
SHOULD render the contents of the <fallback> element, if it is present.

Attributes
The following attributes are available on this element: universal attributes (362), @format (372), @href
(373), @keyref (373), @scope (378), and the attributes defined below.

@autoplay
Specifies whether the resource automatically plays when it is presented. The following values are
recognized: "true", "false", and "-dita-use-conref-target ". The default value is "true".

@controls
Specifies whether the presentation of the resource includes user interface controls. The following
values are recognized: "true", "false", and "-dita-use-conref-target ". The default value is "true".

@height
Indicates the vertical dimension for the resulting display. The value of this attribute is a real number
expressed in decimal notation, optionally followed by a unit of measure. The following units of
measurement are supported: cm, em, in, mm, pc, pt, and px (centimeters, ems, inches, millimeters,

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 246 of 471

picas, points, and pixels, respectively). The default unit is px (pixels). Possible values include:"5",
"5in", and "10.5cm".

@loop
Specifies whether the resource loops when played. The following values are recognized: "true",
"false", and "-dita-use-conref-target ". The default value is "true".

@muted
Specifies whether the resource is muted. The following values are recognized: "true", "false", and "-
dita-use-conref-target ". The default value is "true".

@tabindex
Specifies whether the video resource can be focused and where it participates in sequential
keyboard navigation. See @tabindex in the HTML specification (WHATWG version).

@width
Indicates the horizontal dimension for the resulting display. The value of this attribute is a real
number expressed in decimal notation, optionally followed by a unit of measure. The following units
of measurement are supported: cm, em, in, mm, pc, pt, and px (centimeters, ems, inches,
millimeters, picas, points, and pixels, respectively). The default unit is px (pixels). Possible values
include:"5", "5in", and "10.5cm".

For this element, the following considerations apply:

• The @format attribute specifies the MIME type for the resource. This attribute enables
processors to avoid loading unsupported resources. If @format is not specified and @keyref is
specified, the effective type for the key named by the @keyref attribute is used as the value. If an
explicit @format is not specified on either the <video> element or key definition, processors can
use other means, such the URI file extension, to determine the effective MIME type of the
resource.

• The @href attribute specifies the absolute or relative URI of the video resource. If @href is
specified, also specify @format.

Examples
This section contains examples of how the <video> element can be used.

Figure 119: Example of a <video> element that uses direct addressing

In the following code sample, a video resource is referenced using direct addressing. The @format
attribute specifies the MIME type of the video.

<video href="video.mp4" format="video/mp4"/>

Figure 120: Example of a <video> element that uses indirect addressing

In the following code sample, the video resource is addressed using a key reference:

<video keyref="video"/>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 247 of 471

https://html.spec.whatwg.org/#the-tabindex-attribute

The URI and the MIME type do not need to be specified on the <video> element, since they are
specified on the key definition:

<keydef keys="video" href="video.mp4" format="video/mp4"/>

Figure 121: Example of a <video> element with multiple formats

In the following code sample, <media-source> elements are used to specify the different video formats
that are available.

<video>
 <media-source href="video.mp4" format="video/mp4"/>
 <media-source href="video.ogg" format="video/ogg"/>
 <media-source href="video.webm" format="video/webm"/>
</video>

Figure 122: Example of a <video> element with multiple formats and multilingual subtitles

The following code sample defines multiple presentational details for a video that is available in multiple
formats. The video is referenced using key reference and a fallback image is provided for use when the
video cannot be displayed.

<video height="300px"
 loop="false"
 muted="false"
 width="400px">
 <desc>A video illustrating this procedure.</desc>
 <fallback>
 <image href="video-not-available.png">
 <alt>This video cannot be displayed.</alt>
 </image>
 </fallback>
 <video-poster keyref="demo1-video-poster"/>
 <!-- Multiple formats, referenced via key. The key definition
 specifies both the URI and the MIME type -->
 <media-source keyref="demo1-video-mp4"/>
 <media-source keyref="demo1-video-ogg"/>
 <media-source keyref="demo1-video-webm"/>
 <!-- Subtitle tracks in English, French and German.
 Each key definition provides a URI and sets type="subtitles". -->
 <media-track srclang="en" keyref="demo1-video-subtitles-en"/>
 <media-track srclang="fr" keyref="demo1-video-subtitles-fr"/>
 <media-track srclang="de" keyref="demo1-video-subtitles-de"/>
</video>

9.3.3.5 <video-poster>
A video poster is an image that is displayed while a video is loading.

Usage information
The <video-poster > element is modeled on the @poster attribute that can be specified on the
HTML5 <video> element.

Attributes
The following attributes are available on this element: universal attributes (362), @format (372), @href
(373), @keyref (373), and @scope (378).

For this element, the @href attribute specifies the URI of the poster resource.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 248 of 471

Example
See <video> (248).

9.3.4 Indexing elements
The indexing elements provide content that a processor can use to generate indexes.

9.3.4.1 <index-see>
An <index-see> element directs the reader to an index entry that the reader should use instead of the
current one.

Usage information
There can be multiple <index-see> elements within an <indexterm> element.

Processing expectations

082 (393) Processors SHOULD ignore an <index-see> element if its parent <indexterm>
element contains any <indexterm> children.

Attributes
The following attributes are available on this element: universal attributes (362) and @keyref (373).

Examples
This section contains examples of how <index-see> elements can be used.

Figure 123: Use of an <index-see> element

The following code sample shows how an <index-see> element is used to refer readers to the
preferred term:

<indexterm>Carassius auratus
 <index-see>goldfish</index-see>
</indexterm>

This markup will generate an index entry without a page reference. It might look like the following:

Figure 124: Use of an <index-see> element to redirect to a multi-level index entry

The following code sample shows how an <index-see> is used to redirect to a multilevel index entry:

<indexterm>feeding goldfish
 <index-see>goldfish
 <indexterm>feeding</indexterm>
 </index-see>
</indexterm>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 249 of 471

9.3.4.2 <index-see-also>
An <index-see-also> element directs the reader to an index entry that the reader can use in addition
to the current one.

Usage information
A single <indexterm> element can contain mulitple <index-see-also> elements.

Processing expectations

083 (393) Processors SHOULD ignore an <index-see-also> element if its parent
<indexterm> element contains any <indexterm> children.

Attributes
The following attributes are available on this element: universal attributes (362) and @keyref (373).

Examples
This section contains examples of how <index-see-also> elements can be used.

Figure 125: Use of an <index-see-also> element

The following code sample shows the use of an <index-see-also> element to generate a "see also"
reference to the index entry for "goldfish".

<indexterm>carp
 <index-see-also>goldfish</index-see-also>
</indexterm>

This markup generates a primary index entry for "carp" and a redirection that instructs the reader to "see
also goldfish".

Figure 126: Use of an <index-see-also> element to redirect to a multilevel index entry

The following code sample shows the use of an <index-see-also> element to redirect to a multilevel
<indexterm> element:

<indexterm>feeding
 <index-see-also>goldfish
 <indexterm>feeding</indexterm>
 </index-see-also>
</indexterm>

9.3.4.3 <indexterm>
An <indexterm> element contains content that is used to produce an index entry. Nested
<indexterm> elements create multi-level indexes.

Rendering expectations
The content of @indexterm entries is not rendered in the flow of body text; it is rendered only as part of
an index.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 250 of 471

Attributes
The following attributes are available on this element: universal attributes (362), @keyref (373), and the
attributes defined below.

@start
Specifies an identifier that indicates the start of an index range.

@end
Specifies an identifier that indicates the end of an index range.

Examples
This section contains examples of how <indexterm> elements can be used.

Figure 127: Index reference to a point within in a topic

When index entries are placed in the body of a topic, they serve as point references to their location in the
topic.

In the following code sample, the <indexterm> element provides a point reference to the beginning of
the paragraph.

<p><indexterm>databases</indexterm>Databases are used to ...</p>

Figure 128: Index entries within topic prologues or DITA maps

When index entries are located within the <prolog> element in a topic or the <topicmeta> element in
a DITA map, they serve as point references to the start of the topic title.

In the following code sample, the <indexterm> element provides a reference to the topic as a whole;
the generated index entry is associated with the start of the <title> element.

<topic id="about-databases">
 <title>About databases</title>
 <prolog>
 <metadata>
 <keywords>
 <indexterm>databases</indexterm>
 </keywords>
 </metadata>
 </prolog>
 <body>
 <!-- content... -->
 </body>
</topic>

The effect is the same as if the <indexterm> element had been located in the map:

<map>
 <topicref href="aboutdatabases.dita">
 <topicmeta>
 <keywords>
 <indexterm>databases</indexterm>
 </keywords>
 </topicmeta>
 </topicref>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 251 of 471

 <!-- ... -->
</map>

Figure 129: A simple index range

A simple index range will look something like this:

<indexterm start="cheese">cheese</indexterm>
<!-- ... additional content -->
<indexterm end="cheese"/>

This markup will generate a top-level index term for "cheese" that covers a series of pages, such as:

cheese 18-24

Figure 130: A more complex index range

Specifying a range for nested terms is similar. In this sample, the range is specified for the tertiary index
entry "pecorino":

<indexterm>cheese
 <indexterm>sheeps milk
 <indexterm start="level-3-pecorino">pecorino</indexterm>
 </indexterm>
</indexterm>
 <!-- ... additional content ... -->
<indexterm end="level-3-pecorino"/>

9.3.5 Related links elements
The related links elements define, group, and describe hyperlinks that are embedded in a DITA topic. The
links are contained by the <related-links> element and apply to the DITA topic as a whole.

9.3.5.1 <link>
A link is a reference to another DITA topic or a non-DITA resource.

Processing expectations
When displayed, links are typically sorted based on their attributes, which define the type or role of the
link target in relation to the current topic.

Attributes
The following attributes are available on this element: link-relationship attributes (368), universal
attributes (362), @keyref (373), @otherrole (375), and @role (376).

Example
The following code sample shows a simple collection of links in a DITA topic. There are four links: two to
DITA topics and two to to HTML pages. The <linktext> element provides link text for the HTML pages,
and the <desc> element contain text that describes the resource that the link targets.

<related-links>
 <link href="covid-19.dita"/>
 <link href="covid-19-testing.dita"/>
 <link format="html" href="covid-19-nc.html">
 <linktext>COVID-19 in North Carolina</linktext>
 </link>
 <link format="html" href="239fh49.html#resources">
 <linktext>Public health resources in Durham, NC</linktext>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 252 of 471

 <desc>When you work as a contact tracer, you need to know ...</desc>
 </link>
</related-links>

9.3.5.2 <linkinfo>
Link information is a description of the links that are contained in a <linklist> element. It can provide
additional information about those links.

Rendering expectations
The <linkinfo> element is considered part of the content flow and typically rendered as a paragraph.

Attributes
The following attributes are available on this element: universal attributes (362).

Example
See <linklist> (253).

9.3.5.3 <linklist>
A link list is an author-ordered group of links that can include a title.

Rendering expectations
When rendering links, processors preserve the order of links that are specified within <linklist>
elements.

Processing expectations
Attributes that cascade between topic references in a map, such as the @scope and @format attributes,
also cascade from this element to contained links.

Attributes
The following attributes are available on this element: universal attributes (362), @collection-type
(370), @duplicates (371), @format (372), @otherrole (375), @role (376), @scope (378), and
@type (379).

Example
The following code sample shows how the <linklist> element is used to construct a list of related
links. The <linkinfo> element provides additional information about the list of links.

<linklist>
 <title>Repairing widgets</title>
 <link href="debug.dita"/>
 <link href="repair.dita"/>
 <link href="test.dita"/>
 <linkinfo>To repair a reciprocating widget,follow the instructions carefully
 and in the specified order.</linkinfo>
</linklist>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 253 of 471

9.3.5.4 <linkpool>
A link pool is a group of links. The order that the links are rendered in the output is determined by the
processor.

Rendering expectations
The order in which links in a <linkpool> element are rendered is processor-specific. A processor might
sort links based on role or type. A processor might move or remove links based on the context. For
example, prerequisite links might be rendered at the beginning of a Web page, or links to the next topic
might be removed if the two topics are rendered on the same page in a PDF.

Processing expectations
Attributes that cascade between topic references in a map, such as the @scope and @format attributes,
also cascade from this element to contained links.

Attributes
The following attributes are available on this element: universal attributes (362), @collection-type
(370), @duplicates (371), @format (372), @otherrole (375), @role (376), @scope (378), and
@type (379).

Example
The following code sample shows how a <linkpool> element is used to group a set of conceptual
information. The order in which the links are rendered in the output is processor-dependent. In this
example, the @type attribute on the <linkpool> element cascades to nested <link> elements.

<related-links>
 <linkpool type="concept">
 <link href="czez.dita#czez" role="next"/>
 <link href="czunder.dita"/>
 <link format="html" href="czover.htm#sqljsupp" role="parent">
 <linktext>Overview of the CZ</linktext>
 </link>
 <link format="html" href="czesqlj.htm#sqljemb">
 <linktext>Working with CZESQLJ</linktext>
 <desc>When you work with CZESQLJ, you need to know...</desc>
 </link>
 </linkpool>
</related-links>

9.3.5.5 <linktext>
Link text is the label for a link or resource.

Usage information
The <linktext> element provides descriptive text for a link. It is most commonly used when the target
cannot be resolved during processing or when a title for the reference cannot be determined by a
processor. For example, link text might be required when the link is to a peer, external, or non-DITA
resource.

Rendering expectations
When a link contains a <linktext> element, the content of the <linktext> element is rendered
instead of the text that retrieved from the resource.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 254 of 471

Attributes
The following attributes are available on this element: universal attributes (362).

Example
The following code sample shows how a <linktext> element can be used to provide link text for a
related link to a non-DITA resource:

<related-links>
 <link href="SQLJ-example.html" format="html" scope="local">
 <linktext>Accessing relational data with SQLJ</linktext>
 </link>
</related-links>

9.3.6 Table elements
DITA topics support two types of tables: complex table and simple table.

The <table> element uses the OASIS Exchange Table Model, a simplification of the CALS table model.
The complex table provides a wide variety of controls over the display properties of the data and even the
table structure itself.

The <simpletable> element is structurally less complex than the <table> element and so is an easier
base for specialization. It reflects a content model that is close to the HTML table. The <simpletable>
element does not provide much control over formatting, although it permits titles and row and column
spanning.

9.3.6.1 <colspec>
A column specification provides information about a single column in a table that is based on the OASIS
Exchange Table Model. The information might include a column name and number, cell content
alignment, or column width.

Attributes
The following attributes are available on this element: localization attributes (362), ID and conref
attributes (362), @align (368), @base (363), @char (369), @charoff (369), @class (363),
@colsep (371), @outputclass (365), @rowheader (377), @rowsep (377), and the attributes defined
below.

@colnum
Specifies the number of the column in the table, where 1 represents the first logical column.

@colname
Specifies a name for the column. The <entry> element can use the @colname attribute to refer to
the column.

@colwidth
Specifies the column width. Valid values are either a proportional or fixed measure:
Proportional measure

Specifies the width of each column in relationship to the width of the other columns. The value is
a space-separated list of relative column widths. Each column width is specified as a positive
integer or decimal number followed by an asterisk character.

Fixed measure
A value of a coefficient followed by a unit of measurement. The coefficients are positive integers
or fixed point numbers. The fixed unit values are case-insensitive. The allowed units of measure
are cm (centimeters), in (inches), pi (picas), and pt (points). The default unit of measure is pt.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 255 of 471

If the @colwidth attribute is not specified or is empty, a proportional measure of "1*" is assumed.

Example
See <table> (261).

9.3.6.2 <entry>
A table entry represents a single cell in a table that is based on the OASIS Exchange Table Model.

Attributes
The following attributes are available on this element: ID and conref attributes (362), localization
attributes (362), @align (368), @base (363), @char (369), @charoff (369), @class (363),
@colsep (371), @outputclass (365), @rev (366), @rowsep (377), @valign (379), and the
attributes defined below.

@colname
Specifies the column name in which an entry is found. The value is a reference to the @colname
attribute on the <colspec> element.

@headers
Specifies which entries in the current table provide headers for this cell. The @headers attribute
contains an unordered set of unique, space-separated tokens, each of which is an ID reference of an
entry from the same table.

@nameend
Specifies the last logical column that is included in a horizontal span. The value is a reference to the
@colname attribute on the <colspec> element.

@namest
Specifies the first logical column that is included in a horizontal span. The value is a reference to the
@colname attribute on the <colspec> element.

@morerows
Specifies the number of additional rows to add in a vertical span.

@rotate
Specifies whether the contents of the entry are rotated. The following values are valid:

0
Indicates that no rotation occurs.

1
Indicates that the contents of the cell are rotated 90 degrees counterclockwise.

-dita-use-conref-target
See 7.3.6 Using the -dita-use-conref-target value (149) for more information.

@scope
Specifies that the current entry is a header for other table entries. The following values are valid:

col
Indicates that the current entry is a header for all cells in the column.

colgroup
Indicates that the current entry is a header for all cells in the columns that are spanned by this
entry.

row
Indicates that the current entry is a header for all cells in the row.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 256 of 471

rowgroup
Indicates that the current entry is a header for all cells in the rows that are spanned by this entry.

-dita-use-conref-target
See 7.3.6 Using the -dita-use-conref-target value (149) for more information.

Example
See <table> (261).

9.3.6.3 <row>
A table row is a single row in a table that is based on the OASIS Exchange Table Model.

Attributes
The following attributes are available on this element: universal attributes (362), @rowsep (377) and
@valign (379).

Example
See <table> (261).

9.3.6.4 <simpletable>
A simple table is a basic tabular environment that is designed to present organized content.

Usage information
The <simpletable> element is designed for close compatibility with HTML5 tables. It can contain a title
and allows column and row spanning. The @keycol attribute indicates the key column. A key column
contains content that represents the key to the tabular structure.

The <simpletable> element can also be used as the base for specialized structures, such as the
property and choice tables that are available in the Technical Content edition.

Rendering expectations
When a key column is specified for a simple table, it is treated as a vertical header.

Attributes
The following attributes are available on this element: display attributes (368), simpletable attributes
(368), and universal attributes (362).

Examples
This section contains examples of how the <simpletable> element can be used.

Figure 131: Example of a simple table

The following code sample shows a simple table that contains menu items and prices:

<simpletable>
 <sthead>
 <stentry>Menu item</stentry>
 <stentry>Price</stentry>
 </sthead>
 <strow>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 257 of 471

 <stentry>Apple pie</stentry>
 <stentry>$7.00</stentry>
 </strow>
 <strow>
 <stentry>Cheese sandwich</stentry>
 <stentry>$10.00</stentry>
 </strow>
 <strow>
 <stentry>Milk shake</stentry>
 <stentry>$6.50</stentry>
 </strow>
</simpletable>

The simple table might be rendered in the following way:

Figure 132: Example of a simple table with column and row spanning

The following code sample shows a simple table that tracks meals. The table has a title and column and
row spans.

<simpletable>
 <title>Food log for Wednesday</title>
 <sthead>
 <stentry>Meal</stentry>
 <stentry>Food</stentry>
 </sthead>
 <strow>
 <stentry colspan="2">Fasting period</stentry>
 </strow>
 <strow>
 <stentry>Lunch</stentry>
 <stentry rowspan="2">Pasta</stentry>
 </strow>
 <strow>
 <stentry>Dinner</stentry>
 </strow>
</simpletable>

The simple table might be rendered in the following way:

Figure 133: Example of a simple table that uses @keycol

The following code sample shows a simple table that contains information about the caloric content and
prices of menu items. The @keycol attribute indicates that the first column, which contains the menu
items, is the key column.

<simpletable keycol="1">
 <sthead>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 258 of 471

 <stentry>Menu item</stentry>
 <stentry>Calories</stentry>
 <stentry>Price</stentry>
 </sthead>
 <strow>
 <stentry>Chicken dish</stentry>
 <stentry>850</stentry>
 <stentry>$12.00</stentry>
 </strow>
 <strow>
 <stentry>Vegetarian dish</stentry>
 <stentry>525</stentry>
 <stentry>$9.00</stentry>
 </strow>
 <strow>
 <stentry>Vegan dish</stentry>
 <stentry>475</stentry>
 <stentry>$7.00</stentry>
 </strow>
</simpletable>

This simple table might be rendered in the following way:

In the sample rendering, the content of the key column is highlighted with bold formatting. However, note
that rendering of the key column is left up to the implementation.

9.3.6.5 <stentry>
A simple table entry represents a single cell within a simple table.

Attributes
The following attributes are available on this element: table accessibility attributes (368), universal
attributes (362), and the attributes defined below.

@colspan
Specifies the number of columns that a cell is to span inside a simple table.

@rowspan
Specifies the number of rows that a cell is to span inside a simple table.

Example
See <simpletable> (257).

9.3.6.6 <sthead>
A simple table header is an optional header row for a simple table.

Usage information

Comment by Kristen J Eberlein on 21 December 2021

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 259 of 471

This topic needs to mention the role that table headers play in ensuring that content is accessible. It
should link to the new material (not yet developed) about accessibility.

Disposition: Unassigned

Attributes
The following attributes are available on this element: universal attributes (362).

Example
See <simpletable> (257).

9.3.6.7 <strow>
A simple table row is a single row in a simple table.

Attributes
The following attributes are available on this element: universal attributes (362).

Example
See <simpletable> (257).

9.3.6.8 <table>
A table based on the OASIS Exchange Table Model organizes arbitrarily complex relationships of tabular
information. This standard table markup provides a wide variety of controls over the display properties of
the data and even the table structure itself.

Usage information
The <table> element is based on the OASIS Exchange Table Model. However, it is augmented with
DITA attributes that enable accessibility, content reference, specialization, and more.

An optional <title> inside the <table> element provides a caption to describe the table. In addition,
the optional <desc> element enables a table description.

See 9.3.6.4 simpletable (257) for a simplified table model that is closely aligned with the HTML5 table
model, and which can be easily specialized.

For <table>, in place of the @expanse attribute that is used by other DITA elements, the @pgwide
attribute is used in order to conform to the OASIS Exchange Table Model.

Rendering expectations
If a <table> element contains a <desc> element, the content of the <desc> element is rendered as
part of the content flow.

Attributes
The following attributes are available on this element: universal attributes (362), @colsep (371),
@frame (372), @rowheader (377), @rowsep (377), @scale (377), and the attributes defined below.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 260 of 471

@orient
Specifies the orientation of the table in page-based output formats. This attribute is primarily useful
for print-oriented display. The following values are valid:

port
Indicates portrait page orientation. The page is oriented with its long side vertical and its short
side horizontal.

land
Indicates landscape page orientation. The page is oriented with its long side horizontal and its
short side vertical.

-dita-use-conref-target
See 7.3.6 Using the -dita-use-conref-target value (149) for more information.

@pgwide
Specifies the horizontal placement of the element for print-oriented rendering. The following values
are valid:

0
Aligns the element with the left margin of the current text line and takes indentation into account

1
Places the element on the left page margin

Example
The following code sample shows a table that is used to provide reference information about animals and
gestation:

<table>
 <tgroup cols="2">
 <colspec colwidth="121*"/>
 <colspec colwidth="76*"/>
 <thead>
 <row>
 <entry valign="top">Animal</entry>
 <entry valign="top">Gestation (in months)</entry>
 </row>
 </thead>
 <tbody>
 <row>
 <entry>Elephant (African and Asian)</entry>
 <entry>19-22</entry>
 </row>
 <row>
 <entry>Giraffe</entry>
 <entry>15</entry>
 </row>
 <row>
 <entry>Rhinoceros</entry>
 <entry>14-16</entry>
 </row>
 <row>
 <entry>Hippopotamus</entry>
 <entry>7 1/2</entry>
 </row>
 </tbody>
 </tgroup>
</table>

The formatted output might be rendered in the following way:

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 261 of 471

In this example, the use of the <thead> element for the header enables processors or screen readers to
identify a header relationship between any cell in the table body and the matching header cell above that
column.

9.3.6.9 <tbody>
A table body is a collection of rows in a table that is based on the OASIS Exchange Table Model. It
contains the table rows that contain content.

Attributes
The following attributes are available on this element: universal attributes (362) and @valign (379).

Example
See <table> (261).

9.3.6.10 <tgroup>
A table group is a grouping element that contains column specifications, a table header, and the table
body in a table that is based on the OASIS Exchange Table Model.

Attributes
The following attributes are available on this element: universal attributes (362), @align (368),
@colsep (371), @rowsep (377), and the attribute defined below.

@cols (REQUIRED)
Specifies the number of columns in a table group.

Example
See 9.3.6.8 table (260).

9.3.6.11 <thead>
A table header contains one or more header rows in a table that is based on the OASIS Exchange Table
Model.

Usage information

Comment by Kristen J Eberlein on 21 December 2021

This topic needs to mention the role that table headers play in ensuring that content is accessible. It
should link to the new material (not yet developed) about accessibility.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 262 of 471

Disposition: Unassigned

Attributes
The following attributes are available on this element: universal attributes (362) and @valign (379).

Example
See <table> (261).

9.4 Map elements
Map elements include the core components of DITA maps, such as the <topicref> and <reltable>
elements.

9.4.1 Basic map elements
DITA maps are built from a few core elements that are used for referencing and organizing topics. In
addition, the <topicmeta> element can be used to specify metadata for the map, individual topics, or
groups of topics.

9.4.1.1 <keytext>
Key text is variable or link text that is used when resolving key references. It also specifies alternate text
for images that are referenced by keys.

Processing expectations
See 6.4.12 Processing key references to generate text or link text (112).

Attributes
The following attributes are available on this element: universal attributes (362).

Examples
This section contains examples of how the <keytext> element can be used.

Figure 134: Simple example

The following code sample shows a variable-text definition that includes highlighting elements:

<keydef keys="company-name">
 <topicmeta>
 <keytext translate="no">
 <i>Super</i> Widget Squared²
 </keytext>
 </topicmeta>
</keydef>

Figure 135: Alternate text for an image

DITA implementations often reference images using keys. In such cases, the <keytext> element
provides the alternate text for the image. The following code sample shows the markup for the
<keytext> element:

<keydef keys="company-logo" href="images/logo.jpg" format="jpg">
 <topicmeta>
 <keytext>Acme Widgets logo</keytext>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 263 of 471

 </topicmeta>
</keydef>

The image can be referenced by <image keyref="company-logo"/>. When rendered to mediums
that support alternate text, the effective alternative text for the image is "Acme Widgets logo" as though a
literal <alt> element had been a child of the 
 <!-- Area #1: Frans Banninck Cocq -->
 <area>
 <shape>poly</shape>
 <coords>119, 4, 90, 7, 87, 20, 53, 36, 45, 51, 7, 188, 12, 467,
 223, 464, 240, 315, 223, 254, 210, 168, 193, 146, 173, 121, 167,
 87, 169, 70, 181, 57, 189, 35, 164, 24, 140, 4</coords>
 <xref format="html" scope="external"
 href="https://en.wikipedia.org/wiki/Frans_Banninck_Cocq">
 Frans Banninck Cocq</xref>
 </area>
 <!-- Area #2: A member of the schutterij (the night watch) -->
 <area>
 <shape>circle</shape>
 <coords>223, 98, 48</coords>
 <xref format="html" scope="external"
 href="https://en.wikipedia.org/wiki/Schutterij">A member of the
 schutterij (the night watch)</xref>
 </area>
 <!-- Area #3: Willem_van_Ruytenburch -->
 <area>
 <shape>rect</shape>
 <coords>276, 60, 425, 460</coords>
 <xref format="html" scope="external"
 href="https://en.wikipedia.org/wiki/Willem_van_Ruytenburch">
 Willem van Ruytenburch</xref>
 </area>
</imagemap>

The following image shows the areas that are defined by the image map. Each of the three supported
shapes are used.

The following table lists the defined areas, the shape used, alternate text, and link targets:

Area Shape Alternate text Link target

1 Polygon Frans Banninck Cocq Wikipedia entry for Frans Banninck Cocq

2 Circle A member of the schutterij (the night
watch)

Wikipedia entry for Schutterij

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 333 of 471

https://en.wikipedia.org/wiki/Frans_Banninck_Cocq
https://en.wikipedia.org/wiki/Schutterij

Area Shape Alternate text Link target

3 Rectangle Willem van Ruytenburch Wikipedia entry for Willem van
Ruytenburch

Figure 168: Example: Image map with the default shape

The following code sample shows an image map that specifies that the entire image is the linkable region.
Because the default shape is specified, the <coords> element is empty.

<imagemap id="portrait">
 <image keyref="bronte-sisters">
 <alt>Portrait of the Bronte sisters</alt>
 </image>
 <area>
 <shape>default</shape>
 <coords/>
 <xref keyref="wiki-bronte-sisters"/>
 </area>
</imagemap>

9.7.7.4 <shape>
The <shape> element defines the shape of a linkable region in an image map.

Usage information
The values for use in the <shape> element are defined by the HTML5 specification. The following values
are supported as the content of the <shape> element:

circle
Indicates that the linkable region is a circle

default
Indicates the linkable region is a rectangle that exactly covers the entire image

poly
Indicates that the linkable region is a polygon

rect
Indicates that the linkable region is a rectangle

If the <shape> element is left empty, a rectangular shape is assumed.

Specialization hierarchy
The <shape> element is specialized from <keyword>. It is defined in the utilities domain module.

Attributes
The following attributes are available on this element: universal attributes (362) and @keyref (373).

For this element, the @translate attribute has a default value of "no".

Example
See <imagemap> (332).

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 334 of 471

https://en.wikipedia.org/wiki/Willem_van_Ruytenburch
https://en.wikipedia.org/wiki/Willem_van_Ruytenburch
https://www.w3.org/TR/2011/WD-html5-20110525/the-map-element.html#the-area-element

9.7.7.5 <sort-as>
The <sort-as> element can be used to specify an effective sort phrase when the base sort phrase is
not appropriate for sorting, for example, Japanese characters. This element prepends text to the base
sort phrase in order to construct an effective sort phrase.

Usage information
Sort text can be specified in the content of the <sort-as> element or in the @value attribute on the
<sort-as> element. The <sort-as> element is also useful for elements where the base sort phrase is
inadequate or non-existent, such as an index entry for a Japanese Kanji phrase.

If a <keyword> element is used within <sort-as>, the @keyref attribute can be used to set the sort
phrase. If a <keyword> uses @keyref and would otherwise also act as a navigation link, the link aspect
of the @keyref attribute is ignored.

Some elements in the base DITA vocabulary are natural candidates for sorting, including topics, definition
list entries, index entries, and rows in tables and simple tables. Authors are likely to include <sort-as>
elements in the following locations:

• For topics, the <sort-as> element can be included directly in <title> or <titlealt> when
the different forms of title need different effective sort phrases. If the effective sort phrase is
common to all the titles for a topic, the <sort-as> element can be included as a direct child of
the <prolog> element in the topic.

• For topic references, the <sort-as> element can be included directly in the <titlealt>
element with a @title-role of navigation, such as <navtitle>, within <topicmeta> or
as a child of <topicmeta>.

• For glossary entry topics, the <sort-as> element can be included directly in <glossterm> or
as a direct child of the <prolog> element.

• For definition list items, the <sort-as> element can be included in the <dt> element.
• For index entries, the <sort-as> can be included as a child of <indexterm>. In a multilevel

<indexterm> element, the <sort-as> element only affects the level in which it occurs.

Processing expectations
If the @value attribute is not specified and the <sort-as> element does not contain content, then the
<sort-as> element has no effect.

As a specialization of <data>, the <sort-as> element is allowed in any context where <data> is
allowed. However, the presence of <sort-as> within an element does not necessarily indicate that the
containing element should be sorted. Processors can choose to sort any DITA elements for any reason.
Likewise, processors are not required to sort any elements.

091 (394) Processors SHOULD expect to encounter <sort-as> elements in the above
locations. Processors that sort SHOULD use the following precedence rules:

• A <sort-as> element that is specified in a title takes precedence over a
<sort-as> element that is specified as a child of the topic prolog.

• Except for instances in the topic prolog, processors only apply <sort-as>
elements that are either a direct child of the element to be sorted or a direct
child of the title- or label-defining element of the element to be sorted.

• When an element contains multiple, direct-child, <sort-as> elements, the
first direct-child <sort-as> element in document order takes precedence.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 335 of 471

• It is an error if there is more than one <sort-as> child for a given
<indexterm> element.

• Sort phrases are determined after filtering and content reference resolution
occur.

092 (394) When a <sort-as> element is specified, processors that sort the containing
element MUST construct the effective sort phrase by prepending the content of the
<sort-as> element to the base sort phrase. This ensures that two items with the
same <sort-as> element but different base sort phrases will sort in the
appropriate order.

For example, if a processor uses the content of the <title> element as the base
sort phrase, and the title of a topic is "24 Hour Support Hotline" and the value of the
<sort-as> element is "twenty-four hour", then the effective sort phrase would be
"twenty-four hour24 Hour Support Hotline".

Specialization hierarchy
The <sort-as> element is specialized from <data>. It is defined in the utilities-domain module.

Attributes
The following attributes are available on this element: universal attributes (362), @name (375), and
@value (379).

For this element,

• The @name attribute has a default value of "sort-as".
• The @value attribute specifies text to combine with the base sort phrase to create an effective

sort phrase. When the <sort-as> element has content and the @value attribute is specified, the
@value attribute takes precedence.

Example
The following examples illustrate how a glossary entry for the Chinese ideographic character for "big"
might specify an effective sort phrase of "dada" (the Pin-Yin transliteration for Mandarin):

Figure 169: <sort-as> within <glossterm>

In the following code sample, the <sort-as> element is located within the <glossterm> element:

<glossentry id="gloss-dada">
 <glossterm>
 <sort-as value="dada"/>
 大大
 </glossterm>
 <glossdef>Literally "big big".</glossdef>
</glossentry>

Figure 170: <sort-as> within <prolog>

In the following code sample, the <sort-as> element is located within the <prolog> element of the
glossary entry topic:

<glossentry id="gloss-dada">
 <glossterm>大大</glossterm>
 <glossdef>Literally "big big".</glossdef>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 336 of 471

 <prolog>
 <sort-as>dada</sort-as>
 </prolog>
</glossentry>

Related concepts
Sorting (179)
Processors can be configured to sort elements. Typical processing includes sorting glossary entries,
index entries, list items, and tables based on the contents of cells in specific columns or rows.

9.8 Other elements

9.8.1 Legacy conversion elements
Conversion elements exist primarily to aid in the conversion of content to DITA.

9.8.1.1 <required-cleanup>
Required cleanup sections are placeholders for migrated elements that cannot be appropriately tagged
without manual intervention, or for content that must be cleaned up before publishing.

Usage information
As the element name implies, the intent for authors is to clean up the contained material and eventually
remove the <required-cleanup> element.

Rendering expectations

Comment by Robert on 20200831
The following statement was written as if RFC-level "must" was used, but was not marked with RFC.
I've added the RFC notation; if this is not meant to be "MUST" then we need to find alternate wording.

We should probably also use a clearer definition of "Processors" in this context, as an editor is a
processor that should not be forced to strip the content from displaying.

Update 2020-10-19: moving the "must strip" language into a rendering section. This is about not
rendering the element.

Disposition: Unassigned

093 (394) Processors MUST strip this element from output by default. The content of
<required-cleanup> is not considered to be publishable data.

Processing expectations
Processor options might be provided to allow a draft view of migrated content in context.

Attributes
The following attributes are available on this element: universal attributes (362) and the attribute defined
below.

@remap
Specifies information about the origins of the content within the <required-cleanup> element.
This provides authors with context for determining how migrated content was originally encoded.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 337 of 471

For this element, the @translate attribute has a default value of "no".

Example
In the following example, an HTML document that used the <center> element was migrated to DITA.
Because DITA has no clear equivalent element, the content is stored in <required-cleanup> until it
can be marked up appropriately.

<section>
 <title>Using the display</title>
 <required-cleanup remap="center">If you cannot read
 your display, see "Adjusting the language setting"
 before you continue.</required-cleanup>
</section>

9.8.2 DITAVAL elements
A DITAVAL document identifies content that is filtered and flagged at rendering time. The DITAVAL
document has an extension of .ditaval.

9.8.2.1 <alt-text>
The <alt-text> element in a DITAVAL document specifies alternate text for an image that is used to
flag content. If an image is not specified, the text is used to mark the flagged content.

Rendering expectations
If no alternate text is specified, processors can provide default alternate text to indicate the start and end
point of the flagged content.

Example
The following code sample shows a DITAVAL document that is used to render icons before content that is
specific to particular audiences. The <alt-text> element provides alternate text for the icons:

<val>
 <prop action="flag" att="audience" val="novice">
 <startflag imageref="novice-icon.gif">
 <alt-text>Novice</alt-text>
 </startflag>
 </prop>
 <prop action="flag" att="audience" val="expert">
 <startflag imageref="expert-icon.gif">
 <alt-text>Expert</alt-text>
 </startflag>
</val>

9.8.2.2 <endflag>
The <endflag> element in a DITAVAL document specifies information that identifies the end of flagged
content. The information can be an image, alternate text, or both.

Usage information
If the <endflag> element does not specify an image or provide alternate text, the element has no
defined purpose.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 338 of 471

Rendering expectations
Processors treat the information provided by the <endflag> element in the following way:

• If an image is specified, the image is used as a flag to identify the end of the flagged content. If
the <alt-text> element contains content, the content is used as alternate text for the image.

• If alternate text is specified but the <endflag> element does not specify an image, the alternate
text is used to indicate the end of the flagged content.

Attributes
The following attribute is available on this element:

@imageref
Specifies a URI reference to the image, using the same syntax as the @href attribute. See 6.2.2 The
href attribute (95) for information on supported values and processing implications.

Example
The following code sample shows a DITAVAL document that is used to flag content that applies to
administrators. The <startflag> and <endflag> elements provide text that is used to indicate the
start and end point of the flagged content.

<val>
 <prop action="flag" att="audience" val="administrator">
 <startflag>
 <alt-text>Administrator content</alt-text>
 </startflag>
 <endflag>
 <alt-text>End of administrator content</alt-text>
 </endflag>
 </prop>
</val>

9.8.2.3 <prop>
The <prop> element in a DITAVAL document specifies filtering or flagging actions that occur when
rendering. The actions target the @props attribute or specializations of @props, including @audience,
@deliveryTarget, @otherprops, @platform, and @product.

Usage information
The following table lists the functions that are performed by the <prop> element in a DITAVAL document:

Markup Result

A <prop> element that specifies
both an @att and a @val attribute

Specifies an action (exclude, flag, include, or pass through) for the attribute
or attribute group with the specified value

A <prop> element that specifies
only an @att attribute

Sets a default action for the specified attribute or attribute group

A <prop> element without an @att
and @val attribute

Sets a default action for all conditional-processing attributes not explicitly
specified in the DITAVAL document

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 339 of 471

Rendering expectations

094 (394) For the @color and @backcolor attributes on <prop> and <revprop>,
processors SHOULD support at least the following values:

• The color names listed under the heading "<color>" in the XSL version 1.1
specification

• The associated hex code

For the @style attribute on <rev> and <revprop>, processors SHOULD support
the following tokens:

• bold
• double-underline
• italics
• overline
• underline

In addition, processors MAY support proprietary tokens for the @style attribute.
Such tokens SHOULD have a processor-specific prefix to identify them as
proprietary. If a processor encounters an unsupported style token, it MAY issue a
warning, and it MAY render content that is flagged with such a style token by using
some default formatting.

Processing expectations

095 (394) The following markup in a DITAVAL document is an error condition:

• More than one <prop> element with no @att attribute
• More than one <prop> element with the same @att attribute and no value
• More than one <prop> element with the same @att attribute and same

@value
Processors MAY provide an error or warning message for these error conditions.

The following list outlines how processors apply @outputclass flags:

• If one or more DITAVAL properties apply @outputclass flags to the same element, and the
element already specifies one or more values for the @outputclass attribute, processors treat
the element as if the tokens for the @outputclass attribute that were provided in the DITAVAL
document are specified first.

• If two or more DITAVAL properties apply @outputclass flags to the same element, processors
treat the element as if each value was specified for the @outputclass attribute. The order of the
tokens for the @outputclass attribute that were provided in the DITAVAL document is
undefined.

Attributes
The following attributes are available on this element:

@action (REQUIRED)

Specifies the action to be taken. The following values are supported:

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 340 of 471

http://www.w3.org/TR/2006/REC-xsl11-20061205/#datatype
http://www.w3.org/TR/2006/REC-xsl11-20061205/#datatype

exclude
Indicates that the content is excluded from the output, if all values for the specified attribute are
excluded.

flag
Indicates that the content is included in the output and flagged, if the content has not been
excluded.

include
Indicates that the content is included in the output. This is the default behavior, unless otherwise
set.

passthrough
Indicates that the content is included in the output and that the attribute value is preserved. This
enables further processing by a runtime engine.

@att
Specifies the conditional-processing attribute that is targeted. The value is the literal attribute name
or the name of a group within one of those attributes, with the group name specified using the
generalized attribute syntax. If the @att attribute is absent, then the <prop> element declares a
default behavior for anything not explicitly specified in the DITAVAL document.

@val
Specifies the attribute value that is targeted. If the @val attribute is absent, then the <prop> element
declares a default behavior for any value in the specified attribute.

The following attributes are only applicable when the @action attribute is set to "flag". If the @action
attribute is not set to "flag", any value specified for these attributes are ignored.

@backcolor
Specifies the background color for flagged text. Colors can be entered by name or hex code. When
images are flagged, the background color is rendered as a thick border.

@color
Specifies the color for flagged text. Colors can be entered by name or hex code. When images are
flagged, the color is rendered as a thin border.

@outputclass
Specifies a value for the @outputclass attribute. The flagged element is treated as if the specified
@outputclass value was specified on that element.

@style
Specifies the formatting to use for flagged text. This attribute can contain multiple space-delimited
tokens.

Example
The following code sample shows a DITAVAL document that contains three <prop> elements:

<?xml version="1.0" encoding="UTF-8"?>
<val>
 <prop action="exclude"/>
 <prop action="passthrough" att="otherprops"/>
 <prop action="include" att="product" val="base-product"/>
</val>

The following list outlines the actions that the DITAVAL document specifies:

1. Sets a default action of "exclude". With the exception of the other conditions that are specified in
the above DITAVAL document, the content of any element that specifies a conditional-processing
attribute is excluded from the rendered output.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 341 of 471

2. Sets a default action of "passthrough" for the @otherprops attribute. The content of any element
that specifies the @otherprops attribute is included in the output. In addition, the value for the
@otherprops attribute is preserved in the rendered output, if supported by the output format.

3. Sets an action of "include" for any element that specifies a value of "base-product" for the
@product attribute. The content of any element that specifies a value of "base-product" for the
@product attribute is included in the rendered output.

When a DITA map is processed using the above DITAVAL document, the following DITA elements are
excluded:

1. Any element for which the @audience, @deliveryTarget, @platform, and @props attributes
(or specializations of @props) specify a non-null value.

2. Any element for which the @product attribute specifies a value that is not equal to "base-
product".

All other content is included.

9.8.2.4 <revprop>
The <revprop> element in a DITAVAL document identifies a value of the @rev attribute for flagging.
Unlike the conditional processing attributes, which can be used for both filtering and flagging, the @rev
attribute can only be used for flagging.

Usage information
Neither the <reprop> element or the @rev attribute are designed to be used for version control.

Rendering expectations
If no alternate text is specified, processors can provide default alternate text to indicate the start and end
point of the flagged content.

096 (394) For the @color and @backcolor attributes on <prop> and <revprop>,
processors SHOULD support at least the following values:

• The color names listed under the heading "<color>" in the XSL version 1.1
specification

• The associated hex code

For the @style attribute on <rev> and <revprop>, processors SHOULD support
the following tokens:

• bold
• double-underline
• italics
• overline
• underline

In addition, processors MAY support proprietary tokens for the @style attribute.
Such tokens SHOULD have a processor-specific prefix to identify them as
proprietary. If a processor encounters an unsupported style token, it MAY issue a
warning, and it MAY render content that is flagged with such a style token by using
some default formatting.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 342 of 471

http://www.w3.org/TR/2006/REC-xsl11-20061205/#datatype
http://www.w3.org/TR/2006/REC-xsl11-20061205/#datatype

Processing expectations

097 (395) It is an error to include more than one <revprop> element with the same @val
attribute. Recovery from this error is implementation dependent. In such cases
processors MAY provide an error or warning message.

The following list outlines how processors apply @outputclass flags:

• If one or more DITAVAL properties apply @outputclass flags to the same element, and the
element already specifies one or more values for the @outputclass attribute, processors treat
the element as if the tokens for the @outputclass attribute that were provided in the DITAVAL
document are specified first.

• If two or more DITAVAL properties apply @outputclass flags to the same element, processors
treat the element as if each value was specified for the @outputclass attribute. The order of the
tokens for the @outputclass attribute that were provided in the DITAVAL document is
undefined.

Attributes
The following attributes are available on this element:

@action (REQUIRED)

Specifies the action to be taken. The following values are supported:

flag
Indicates that the content is included in the output and flagged, if the content has not been
excluded.

include
Indicates that the content is included in the output and not flagged. This is the default behavior,
unless otherwise set.

passthrough
Indicates that the content is included in the output and that the attribute value is preserved. This
enables further processing by a runtime engine. The attribute value is preserved in the syntax
that is required by the runtime engine.

@val
Specifies the value of the @rev attribute. If the @val attribute is not specified, then the <revprop>
element declares a default behavior for any instance of the @rev attribute.

The following attributes are only applicable when the @action attribute is set to "flag". If the @action
attribute is not set to "flag", any value specified for these attributes are ignored.

@backcolor
Specifies the background color for flagged text. Colors can be entered by name or hex code. When
images are flagged, the background color is rendered as a thick border.

@changebar
Specifies a color, style, or character to be used for rendering a change bar.

Comment by Kristen J Eberlein on 22 March 2022

Do we want to be more specify about what values are supported here? Hex codes or names for
color, character, but what for styles? Refer to XSL: FO spec?

Disposition: Unassigned

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 343 of 471

@color
Specifies the color for flagged text. Colors can be entered by name or hex code. When images are
flagged, the color is rendered as a thin border.

@outputclass
Specifies a value for the @outputclass attribute. The flagged element is treated as if the specified
@outputclass value was specified on that element.

@style
Specifies the formatting to use for flagged text. This attribute can contain multiple space-delimited
tokens.

Example
The following code sample shows how the <revprop> element can be used to flag content that has
been marked with the @rev attribute. Elements that specify rev="edits" are rendered in red text, and
glyphs mark the start and end points of the flagged revision. Alternate text is provided.

<val>
 <revprop action="flag" color="red" val="edits">
 <startflag imageref="start-glyph.png>
 <alt-text>Start of revision</alt-text>
 </startflag>
 <endflag imageref="end-glyph.png>
 <alt-text>End of revision</alt-text>
 </endflag>
 </revprop>
</val>

Related concepts
Flagging based on metadata attributes (159)
When rendering content, a conditional processing profile can be used to specify whether an
element's content is flagged based on its conditional processing attributes.

9.8.2.5 <startflag>
The <startflag> element in a DITAVAL document specifies information that identifies the beginning of
flagged content. The information can be an image, alternate text, or both.

Usage information
If the <startflag> element does not specify an image or provide alternate text, the element has no
defined purpose.

Rendering expectations
Processors treat the information provided by the <startflag> element in the following way:

• If an image is specified, the image is used as a flag to identify the beginning of the flagged
content. If the <alt-text> element contains content, the content is used as alternate text for the
image.

• If alternate text is specified but the <startflag> element does not specify an image, the
alternate text is used to indicate the beginning of the flagged content.

Attributes
The following attribute is available on this element:

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 344 of 471

@imageref
Specifies a URI reference to the image, using the same syntax as the @href attribute. See 6.2.2 The
href attribute (95) for information on supported values and processing implications.

Example
The following code sample shows a DITAVAL document that is used to render icons before content that is
specific to a particular operating system. The <startflag> elements specify the icons, and the <alt-
text> elements specify alternate text.

<val>
 <prop action="flag" att="platform" val="linux">
 <startflag imageref="linux-icon.gif">
 <alt-text>Linux</alt-text>
 </startflag>
 </prop>
 <prop action="flag" att="platform" val="mac">
 <startflag imageref="mac-icon.gif">
 <alt-text>Macintosh</alt-text>
 </startflag>
 </prop>
 <prop action="flag" att="platform" val="windows">
 <startflag imageref="windows-icon.gif">
 <alt-text>Windows</alt-text>
 </startflag>
 </prop>
</val>

9.8.2.6 <style-conflict>
The <style-conflict> element in a DITAVAL document declares the behavior to be used when one or
more flagging methods collide on the same element..

Rendering expectations
The following table details how conflicts are resolved when different flagging methods are specified for the
same element:

Flagging method Conflict behavior

backcolor Use the color specified by the @background-conflict-color attribute on the
<style-conflict> element. If no background conflict color is specified, use a
default color that is appropriate for the output format.

changebar Add all change bars that apply.

color Use the color specified by the @foreground-conflict-color attribute on the
<style-conflict> element. If no foreground conflict color is specified, use a
default color that is appropriate for the output format.

style Add all font styles that apply. If two different kinds of underline are used, default to the
heaviest (double underline) and use the color that is specified by the @foreground-
conflict-color attribute. If no foreground conflict color is specified, use a default
color that is appropriate for the output format.

<endflag> Add all flags that apply.

<startflag> Add all flags that apply.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 345 of 471

Attributes
The following attributes are available on this element:

@background-conflict-color
Specifies the color to be used when more than one background color applies to a single element.
Colors can be entered by name or code.

@foreground-conflict-color
Specifies the color to be used when more than one color applies to a single element. Colors can be
entered by name or code.

Example
The following code sample shows a DITAVAL document that specifies that a background color of "#ffffb3"
is used when there are conflicts:

<?xml version="1.0" encoding="UTF-8"?>
<val>
 <style-conflict background-conflict-color="#ffffb3"/>
 <prop action="flag" att="platform" val="dita" backcolor="#ccffb3"/>
 <prop action="flag" att="platform" val="lwdita" backcolor="#ffe6ff"/>
</val>

Any element that specifies a value of "dita lwdita" or "lwdita dita" is rendered with a light-yellow
background color.

9.8.2.7 <val>
The <val> element is the root element of a DITAVAL document.

Processing expectations
For information about processing DITAVAL documents, including how to filter or flag elements with
multiple property attributes or multiple properties within a single attribute, see 7.4 Conditional processing
(154).

Example
This section contains examples of DITAVAL documents and how they can be used.

Figure 171: Sample DITAVAL document

The following code sample shows a DITAVAL document that excludes certain content, flags certain
content, flags certain revisions, and provides a background color for when there are style conflicts:

<val>
 <style-conflict background-conflict-color="red"/>
 <prop action="exclude" att="audience" val="internal-test"/>
 <prop action="flag" att="product" val="YourProd" backcolor="purple"/>
 <prop action="flag" att="product" backcolor="blue"
 color="yellow" style="underline" val="MyProd">
 <startflag imageref="startflag.jpg">
 <alt-text>This is the start of my product info</alt-text>
 </startflag>
 <endflag imageref="endflag.jpg">
 <alt-text>This is the end of my product info</alt-text>
 </endflag>
 </prop>
 <revprop action="flag" val="1.2"/>
</val>

This sample DITAVAL document performs the following actions:

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 346 of 471

• Elements that specify audience="internal-test" are excluded.
• Elements that specify product="YourProd" are rendered with a background color of purple.
• Elements with product="MyProd" get the following actions:

– The image startflag.jpg is placed at the start of the element.
– The image endflag.jpg is placed at the end of the element.
– The element is rendered with a background color of blue.
– The text in the element is rendered in yellow, and the text is underlined.

• Elements marked with rev="1.2" are flagged with the default revision flags, which are
implementation dependent.

• When there are conflicts, for example, if an element is marked with product="MyProd
YourProd", it will be flagged with a background color of red.

Figure 172: DITAVAL document that overrides the default "include" action

The following code sample shows a DITAVAL document that sets a default value of "exclude" for every
conditional-processing attribute. That default value is then overriden by the <prop> elements with a value
of "include."

<val>
 <prop action="exclude"/>
 <prop action="include" att="audience" val="everybody"/>
 <prop action="include" att="audience" val="novice"/>
 <prop action="include" att="product" val="productA"/>
 <prop action="include" att="product" val="productB"/>
</val>

This DITAVAL document performs the following actions:

• The first <prop> element does not specify an attribute, which sets a default action of "exclude"
for every conditional-processing attribute. This means that, by default, any property value not
otherwise defined in this document evaluates to "exclude". Note that this same behavior can be
limited to a single attribute. The following <prop> element sets a default action of "exclude" for all
properties specified on the @platform attribute: <prop action="exclude"
att="platform"/>

• The second and third <prop> elements set an action of "include" for two values on the
@audience attribute. All other values on the @audience attribute still evaluate to "exclude".

• The fourth and fifth <prop> elements set an action of "include" for two values on the @product
attribute. All other values on the @product attribute still evaluate to "exclude".

Related concepts
Filtering based on metadata attributes (158)
When rendering content, a conditional processing profile can be used to specify whether an
element's content is filtered based on its conditional processing attributes.

Flagging based on metadata attributes (159)
When rendering content, a conditional processing profile can be used to specify whether an
element's content is flagged based on its conditional processing attributes.

Examples of conditional processing (160)

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 347 of 471

This section provides examples that illustrate the ways that conditional processing attributes can be
set and used.

9.9 Attributes
This section contains definitions for commonly-used attributes. If an attribute is defined differently on a
specific element, that information is covered in the topic for the specific element.

Comment by Kristen J Eberlein on 29 December 2021

Add a brief overview of the fact that some specific attributes are overloaded – and have different
meanings depending on what element they are specified upon.

Disposition: Unassigned

9.9.1 Attribute groups
Many of the attributes used on DITA elements are defined in attribute groups. These attribute groups are
used both in the grammar files and the specification,

Architectural attributes
This group contains a set of attributes that are defined for document-level elements such as <topic>
and <map>.

@DITAArchVersion (architectural attributes)
Specifies the version of the DITA architecture that is in use. This attribute is in the namespace
http://dita.oasis-open.org/architecture/2005/. This attribute is specified in the topic
and map modules, and it uses a default value of the current version of DITA. The current default is
"2.0".

@specializations (architectural attributes)
Specifies the attribute-domain specializations that are included in the document-type shell. This
attribute is set as a default within the document-type shell. The value varies depending on what
domains are integrated into the document-type shell. For example, a grammar file that includes the
specialized attributes @audience, @deliveryTarget, and @newBaseAtt would set the value to
@props/audience @props/deliveryTarget @base/newBaseAtt.

@xmlns:ditaarch (architectural attributes)
Declares the default DITA namespace. This namespace is declared as such in the RNG modules for
<topic> and <map>, but it is specified as an attribute in the equivalent DTD-based modules. The
value is fixed to "http://dita.oasis-open.org/architecture/2005/".

Common map attributes
This group contains attributes that are frequently used on map elements.

Comment by Kristen J Eberlein on 28 September 2022

I've added draft comments to the attribute definitions in this section that explain how the attribute is
defined in the "DITA map attributes" topic.

Disposition: Unassigned

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 348 of 471

@cascade (common map attributes)

Specifies how metadata attributes cascade within a map. The specification defines the following
values:

merge
Indicates that the metadata attributes cascade, and that the values of the metadata attributes
are additive. This is the processing default for the @cascade attribute.

nomerge
Indicates that the metadata attributes cascade, but that they are not additive for <topicref>
elements that specify a different value for a specific metadata attribute. If the cascading value for
an attribute is already merged based on multiple ancestor elements, that merged value
continues to cascade until a new value is encountered. That is, setting cascade="nomerge"
does not undo merging that took place on ancestor elements.

Processors can also define custom, implementation-specific tokens for this attribute.

See 5.3.1 Cascading of metadata attributes in a DITA map (69) for more information about how this
attribute interacts with metadata attributes.

@chunk (common map attributes)
Specifies how a processor should render a map or branch of a map. For example, it can be used to
specify that individual topic documents should be rendered as a single document, or that a single
document with multiple topics should be rendered as multiple documents.

The following values are valid:

combine
Instructs a processor to combine the referenced source documents for rendering purposes. This
is intended for cases where a publishing process normally results in a single output artifact for
each source XML document.

split
Instructs a processor to split each topic from the referenced source document into its own
document for rendering purposes. This is intended for cases where a publishing process
normally results in a single output artifact for each source XML document, regardless of how
many DITA topics exist within each source document.

Processors can also define custom, implementation-specific tokens for this attribute.

For a detailed description of the @chunk attribute and its usage, see 5.4 Chunking (77).

@collection-type (common map attributes)
Specifies how topics or links relate to each other. The processing default is "unordered", although no
default is specified in the OASIS-provided grammar files. The following values are valid:

unordered
Indicates that the order of the child topics is not significant.

sequence
Indicates that the order of the child topics is significant. Output processors will typically link
between them in order.

choice
Indicates that one of the children should be selected.

family
Indicates a tight grouping in which each of the referenced topics not only relates to the current
topic but also relate to each other.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 349 of 471

Comment by Kristen J Eberlein on 28 September 2022

Here is the content from the "DITA map attributes" topic:

@collection-type
The @collection-type attribute specifies how the children of a <topicref> element
relate to their parent and to each other. This attribute, which is set on the parent element,
typically is used by processors to determine how to generate navigation links in the
rendered topics. For example, a @collection-type value of "sequence" indicates that
children of the specifying <topicref> element represent an ordered sequence of
topics; processors might add numbers to the list of child topics or generate next/previous
links for online presentation. This attribute is available in topics on the <linklist> and
<linkpool> elements, where it has the same behavior. Where the @collection-
type attribute is available on elements that cannot directly contain elements, the
behavior of the attribute is undefined.

Disposition: Unassigned

Comment by Kristen J Eberlein on 28 September 2022

In the definitions of the supported values, do we want to refer to "resources" instead of
"topics"? Since we specify that @collection-type specifies "how topics or links relate to
each other" ...

Disposition: Unassigned

@keyscope (common map attributes)
Specifies that the element marks the boundaries of a key scope.

See 6.4.6 The keyscope attribute (105) for information on using this attribute.

Comment by Kristen J Eberlein on 28 September 2022

Here is the content from the "DITA map attributes" topic:

@keyscope
Defines a new scope for key definition and resolution, and gives the scope one or more
names. For more information about key scopes, see 6.4 Indirect key-based addressing (100).

Disposition: Unassigned

@linking (common map attributes)
Specifies linking characteristics of a topic specific to the location of this reference in a map. If the
value is not specified locally, the value might cascade from another element in the map (for cascade
rules, see 5.3.1 Cascading of metadata attributes in a DITA map (69)).

Comment by robander on Dec 28 2021
The text below matches 1.3 spec text but I'm nervous about "cannot link" type definition. It's
describing how to generate links based on the current context in the map - it's not describing what
the topic itself is allowed to link to, which is how I interpret "can".
Disposition: Unassigned

The following values are valid:

targetonly
A topic can only be linked to and cannot link to other topics.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 350 of 471

http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part3-all-inclusive/langRef/attributes/commonMapAttributes.html#topicref-atts__linking

sourceonly
A topic cannot be linked to but can link to other topics.

normal
A topic can be linked to and can link to other topics. Use this to override the linking value of a
parent topic.

none
A topic cannot be linked to or link to other topics.

-dita-use-conref-target
See 7.3.6 Using the -dita-use-conref-target value (149) for more information.

Comment by Kristen J Eberlein on 28 September 2022

Here is the content from the "DITA map attributes" topic:

@linking

By default, the relationships between the topics that are referenced in a map are reciprocal:

• Child topics link to parent topics and vice versa.
• Next and previous topics in a sequence link to each other.
• Topics in a family link to their sibling topics.
• Topics referenced in the table cells of the same row in a relationship table link to each

other. A topic referenced within a table cell does not (by default) link to other topics
referenced in the same table cell.

This behavior can be modified by using the @linking attribute, which enables an author or
information architect to specify how a topic participates in a relationship. The following values
are valid:

linking="none"
Specifies that the topic does not exist in the map for the purposes of calculating links.

linking="sourceonly"
Specifies that the topic will link to its related topics but not vice versa.

linking="targetonly"
Specifies that the related topics will link to it but not vice versa.

linking="normal"
Default value. It specifies that linking will be reciprocal (the topic will link to related topics,
and they will link back to it).

Authors also can create links directly in a topic by using the <xref> or <link> elements, but
in most cases map-based linking is preferable, because links in topics create dependencies
between topics that can hinder reuse.

Note that while the relationships between the topics that are referenced in a map are
reciprocal, the relationships merely imply reciprocal links in generated output that includes
links. The rendered navigation links are a function of the presentation style that is determined
by the processor.

Disposition: Unassigned

@processing-role (common map attributes)
Specifies whether the referenced resource is processed normally or treated as a resource that is only
included in order to resolve references, such as key or content references. The following values are
valid:

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 351 of 471

normal
Indicates that the resource is a readable part of the information set. It is included in navigation
and search results. This is the default value for the <topicref> element.

resource-only
Indicates that the resource should be used only for processing purposes. It is not included in
navigation or search results, nor is it rendered as a topic. This is the default value for the
<keydef> element.

-dita-use-conref-target
See 7.3.6 Using the -dita-use-conref-target value (149) for more information.

If no value is specified but the attribute is specified on a containing element within a map or within the
related-links section, the value cascades from the closest containing element.

@search (common map attributes)
Specifies whether the target is available for searching. If the value is not specified locally, the value
might cascade from another element in the map (for cascade rules, see 5.3.1 Cascading of metadata
attributes in a DITA map (69)). The following values are valid: "yes", "no", and "-dita-use-conref-
target".

Comment by Kristen J Eberlein on 28 September 2022

Here is the content from the "DITA map attributes" topic:

@search
Specifies whether the topic is included in search indexes.

Disposition: Unassigned

@subjectrefs (common map attributes)
Specifies one or more keys that are each defined by a subject definition in a subject scheme map.
Multiple values are separated by white space.

@toc (common map attributes)
Specifies whether a topic appears in the table of contents (TOC) based on the current map context. If
the value is not specified locally, the value might cascade from another element in the map (for
cascade rules, see 5.3.1 Cascading of metadata attributes in a DITA map (69)). The following values
are valid:

yes
The topic appears in a generated TOC.

no
The topic does not appear in a generated TOC.

-dita-use-conref-target
See 7.3.6 Using the -dita-use-conref-target value (149) for more information.

Comment by Kristen J Eberlein on 28 September 2022

Here is the content from the "DITA map attributes" topic:

@toc
Specifies whether topics are excluded from navigation output, such as a Web site map or an
online table of contents. By default, <topicref> hierarchies are included in navigation
output; relationship tables are excluded.

Disposition: Unassigned

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 352 of 471

Complex table attributes
This group includes attributes that are defined on complex table elements. Unless other noted, these
attributes are part of the OASIS Exchange Table Model. Complex table elements typically use only a
subset of the attributes that are defined in this group.

@align (complex table attributes)
Specifies the horizontal alignment of text in table entries. The following values are valid:

left
Indicates left alignment of the text.

right
Indicates right alignment of the text.

center
Indicates center alignment of the text.

justify
Justifies the contents to both the left and the right.

char
Indicates character alignment. The text is aligned with the first occurrence of the character
specified by the @char attribute.

-dita-use-conref-target
See 7.3.6 Using the -dita-use-conref-target value (149) for more information.

The @align attribute is available on the following table elements: <colspec>, <entry>, and
<tgroup>.

@char (complex table attributes)
Specifies the alignment character, which is the character that is used for aligning the text in table
entries. This attribute applies when align="char". A value of "" (the null string) means there is no
aligning character.

For example, if align="char" and char="." are specified, then text in the table entry aligns with
the first occurrence of the period within the entry. This might be useful if decimal alignment is
required.

The @char attribute is available on the following table elements: <colspec> and <entry>.

@charoff (complex table attributes)
Specifies the horizontal offset of the alignment character that is specified by the @char attribute. The
value is a greater-than-zero number that is less than or equal to 100. It represents the percentage of
the current column width by which the text is offset to the left of the alignment character.

For example, if align="char", char=".", and charoff="50" are all specified, then text in the
table entry is aligned 50% of the distance to the left of the first occurrence of the period character
within the table entry.

The @charoff attribute is available on the following table elements: <colspec> and <entry>.

@colsep (complex table attributes)
Specifies whether to render column separators between table entries. The following values are valid:
"0" (no separators) and "1" (separators).

The @colsep attribute is available on the following table elements: <colspec>, <entry>,
<table>, and <tgroup>.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 353 of 471

@rowheader (complex table attributes)
Specifies whether the entries in the respective column are row headers. The following values are
valid:

firstcol
Indicates that entries in the first column of the table are row headers. This applies when the
@rowheader attribute is specified on the <table> element.

headers
Indicates that entries of the column that is described using the <colspec> element are row
headers. This applies when the @rowheader attribute is specified on the <colspec> element.

norowheader
Indicates that entries in the first column are not row headers. This applies when the
@rowheader attribute is specified on the <table> element.

-dita-use-conref-target
See 7.3.6 Using the -dita-use-conref-target value (149) for more information.

Note This attribute is not part of the OASIS Exchange Table Model upon which DITA tables are
based. Some processors or output formats might not support all values.

The @rowheader attribute is available on the following table elements: <table> and <colspec>.

@rowsep (complex table attributes)
Specifies whether to render row separators between table entries. The following values are valid: "0"
(no separators) and "1" (separators).

The @rowsep attribute is available on the following table elements: <colspec>, <entry>, <row>,
<table>, and <tgroup>.

@valign (complex table attributes)
Specifies the vertical alignment of text in table entries. The following values are valid:

bottom
Indicates that text is aligned with the bottom of the table entry.

middle
Indicates that text is aligned with the middle of the table entry.

top
Indicates that text is aligned with the top of the table entry.

-dita-use-conref-target
See 7.3.6 Using the -dita-use-conref-target value (149) for more information.

The @valign attribute is available on the following table elements: <entry>, <tbody>, <thead>,
and <row>.

Data-element attributes
This group contains attributes that are defined on the <data> element and its specializations.

@datatype (data-element attributes)
Specifies the type of data contained in the @value attribute or within the <data> element. A typical
use of @datatype will be the identifying URI for an XML Schema datatype.

@name (data-element attributes)
Defines a unique name for the object.

Comment by robander

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 354 of 471

Do we need to specify the scope of "unique" here?
Disposition: Unassigned

@value (data-element attributes)
Specifies a value associated with the current property or element.

Date attributes
This group contains attributes that take date values. They are defined on metadata elements that work
with date information:

@expiry (date attributes)
Specifies the date when the information should be retired or refreshed. The date is specified using
the ISO 8601 format: YYYY-MM-DD, where YYYY is the year, MM is the month (01 to 12), and DD is
the day (01-31).

@golive (date attributes)
Specifies the publication or general availability (GA) date. The date is specified using the ISO 8601
format: YYYY-MM-DD, where YYYY is the year, MM is the month (01 to 12), and DD is the day
(01-31).

Display attributes
This group contains attributes that affect the rendering of many elements.

@expanse (display attributes)
Specifies the horizontal placement of the element. The following values are valid:

column
Indicates that the element is aligned with the current column margin.

page
Indicates that the element is placed on the left page margin for left-to-right presentation or the
right page margin for right-to-left presentation.

spread
Indicates that the object is rendered across a multi-page spread. If the output format does not
have anything that corresponds to spreads, then "spread" has the same meaning as "page".

textline
Indicates that the element is aligned with the left (for left-to-right presentation) or right (for right-
to-left presentation) margin of the current text line and takes indentation into account.

-dita-use-conref-target
See 7.3.6 Using the -dita-use-conref-target value (149) for more information.

For <table>, in place of the @expanse attribute that is used by other DITA elements, the @pgwide
attribute is used in order to conform to the OASIS Exchange Table Model.

Some processors or output formats might not support all values.

@frame (display attributes)
Specifies which portion of a border surrounds the element. The following values are valid:

all
Indicates that a line is rendered at the top, bottom, left, and right of the containing element.

bottom
Indicates that a line is rendered at the bottom of the containing element.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 355 of 471

none
Indicates that no lines are rendered.

sides
Indicates that a line is rendered at the left and right of the containing element.

top
Indicates that a line is rendered at the top of the containing element.

topbot
Indicates that a line is rendered at the top and bottom of the containing element.

-dita-use-conref-target
See 7.3.6 Using the -dita-use-conref-target value (149) for more information.

Some processors or output formats might not support all values.

@scale (display attributes)
Specifies the percentage by which fonts are resized in relation to the normal text size. The value of
this attribute is a positive integer. When used on <table> or <simpletable>, the following values
are valid: "50", "60", "70", "80", "90", "100", "110", "120", "140", "160", "180", "200", and -dita-use-
conref-target (149).

This attribute is primarily useful for print-oriented display. Some processors might not support all
values.

If the @scale attribute is specified on an element that contains an image, the image is not scaled.
The image is scaled only if a scaling property is explicitly specified for the <image> element.

ID and conref attributes
This group contains the attributes that enable the naming and referencing of elements.

@conaction
Specifies how the element content will be pushed into a new location. The following values are valid:

mark
The element acts as a marker when pushing content before or after the target, to help ensure
that the push action is valid. The element with conaction="mark" also specifies the target of
the push action with @conref. Content inside of the element with conaction="mark" is not
pushed to the new location.

pushafter
Content from this element is pushed after the location specified by @conref on the element with
conaction="mark". The element with conaction="pushafter" is the first sibling element
after the element with conaction="mark".

pushbefore
Content from this element is pushed before the location specified by @conref on the element
with conaction="mark". The element with conaction="pushbefore" is the first sibling
element before the element with conaction="mark".

pushreplace
Content from this element replaces any content from the element referenced by the @conref
attribute. A second element with conaction="mark" is not used when using
conaction="pushreplace".

-dita-use-conref-target
See 7.3.6 Using the -dita-use-conref-target value (149) for more information.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 356 of 471

See 7.3.2 The conaction attribute (140) for examples and details about the syntax.

@conkeyref
Specifies a key name or a key name with an element ID that acts as an indirect reference to reusable
content. The referenced content is used in place of the content of the current element. See 7.3.4 The
conkeyref attribute (148) for more details about the syntax and behaviors.

@conref
Specifies a URI that references a DITA element. The referenced content is used in place of the
content of the current element. See 7.3.5 The conref attribute (148) for examples and details about
the syntax.

@conrefend
Specifies a URI that references the last element in a sequence of elements, with the first element of
the sequence specified by @conref. The referenced sequence of elements is used in place of the
content of the current element. See 7.3.3 The conrefend attribute (144) for examples and details
about the syntax.

@id
Specifies an identifier for the current element. This ID is the target for references by @href and
@conref attributes and for external applications that refer to DITA or LwDITA content. This attribute
is defined with the XML data type NMTOKEN, except where noted for specific elements within the
language reference.

See 6.1 id attribute (93) for more details.

Inclusion attributes
This group includes attributes defined on <include> and its specializations:

Comment by Kristen J Eberlein on 28 September 2002

What is specialized from <include>? Both base (if any) and technical content ...

Disposition: Unassigned

@encoding (inclusion attributes)

Comment by Kristen J Eberlein on 29 April 2019

Can we replace "should" in the following definition?

Disposition: Unassigned

Specifies the character encoding to use when translating the character data from the referenced
content. The value should be a valid encoding name. If not specified, processors may make attempts
to automatically determine the correct encoding, for example using HTTP headers, through analysis
of the binary structure of the referenced data, or the <?xml?> processing instruction when including
XML as text. The resource should be treated as UTF-8 if no other encoding information can be
determined.

When parse="xml", standard XML parsing rules apply for the detection of character encoding. The
necessity and uses of @encoding for non-standard values of @parse are implementation-
dependent.

@parse (inclusion attributes)
Specifies the processing expectations for the referenced resource. Processors must support the
following values:

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 357 of 471

text

The contents should be treated as plain text. Reserved XML characters should be displayed,
and not interpreted as XML markup.

xml

The contents of the referenced resource should be treated as an XML document, and the
referenced element should be inserted at the location of the <include> element. If a fragment
identifier is included in the address of the content, processors must select the element with the
specified ID. If no fragment identifier is included, the root element of the referenced XML
document is selected. Any grammar processing should be performed during resolution, such
that default attribute values are explicitly populated. Prolog content must be discarded.

It is an error to use parse="xml" anywhere other than within <foreign> or a specialization
thereof.

Processors may support other values for the @parse attribute with proprietary processing semantics.
Processors should issue warnings and use <fallback> when they encounter unsupported @parse
values. Non-standard @parse instructions should be expressed as URIs.

Note Proprietary @parse values will likely limit the portability and interoperability of DITA
content, so should be used with care.

Link relationship attributes
This group contains attributes whose values can be used for representing navigational relationships.

@format (link-relationship attributes)
Specifies the format of the resource that is referenced. See 6.2.1 The format attribute (94) for
detailed information on supported values and processing implications.

@href (link-relationship attributes)
Specifies a reference to a resource. See 6.2.2 The href attribute (95) for detailed information on
supported values and processing implications.

@scope (link-relationship attributes)
Specifies the closeness of the relationship between the current document and the referenced
resource. The following values are valid: "local", "peer", "external", and "-dita-use-conref-target".

See 6.2.3 The scope attribute (96) for detailed information on supported values and processing
implications.

@type (link-relationship attributes)
Describes the target of a reference. See 6.2.4 The type attribute (97) for detailed information on
supported values and processing implications.

Localization attributes

Comment by Kristen J Eberlein on 29 September 2022

The definition of the localizations attribute matches how they are described in the architectural topics.
Wherever possible, the definition is reused. Where it is not reused (because the definition in the
archSpec topics is in a shortdesc), I've checked to ensure that wording is identical.

Disposition: Unassigned

This group contains the attributes that are related to translation and localization.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 358 of 471

@dir

Identifies or overrides the text directionality. The following values are valid:

lro
Indicates an override of the Unicode Bidirectional Algorithm, forcing the element into left-to-right
mode.

ltr
Indicates left-to-right.

rlo
Indicates an override of the Unicode Bidirectional Algorithm, forcing the element into right-to-left
mode.

rtl
Indicates right-to-left.

-dita-use-conref-target
See 7.3.6 Using the -dita-use-conref-target value (149) for more information.

See 4.2.2 The dir attribute (50) for more information.

@translate
Specifies whether the content of the element should be translated. The following values are valid:
"yes", "no", and "-dita-use-conref-target".

See F Element-by-element recommendations for translators (443) for suggested processing defaults
for each element.

Comment by Kristen J Eberlein on 31 December 2021

Does F Element-by-element recommendations for translators (443) really provide suggested
processing defaults for each element? I thought it covered whether an element was block or in-line
and whether there were considerations that translators needed to be aware of.

Disposition: Unassigned

@xml:lang
Specifies the language and optional locale of the content that is contained in an element. Valid values
are language tokens or the null string. The @xml:lang attribute and its values are described in the
Extensible Markup Language 1.0 specification, fifth edition.

Comment by Kristen J Eberlein on 29 September 2022

Do we also want to direct readers to the architectural topics about the @xml:lang attribute?

Disposition: Unassigned

Metadata attributes
This group contains common metadata attributes: @base, @importance, @props, @rev, and @status.
The @base and @props attributes can be specialized.

@base
Specifies metadata about the element. It is often used as a base for specialized attributes that have a
simple syntax for values, but which are not conditional processing attributes.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 359 of 471

http://www.w3.org/TR/REC-xml/#sec-lang-tag

The @base attribute takes a space-delimited set of values. However, when serving as a container for
generalized attributes, the attribute values will be more complex. See 8.4.4 Attribute generalization
(195) for more details.

@importance
Specifies the importance or priority that is assigned to an element. The following values are valid:
"default", "deprecated", "high", "low", "normal", "obsolete", "optional", "recommended", "required",
"urgent", and "-dita-use-conref-target". This attribute is not used for conditional processing, although
applications might use the value of the @importance attribute to highlight elements. For example, in
steps of a task topic, the value of the @importance attribute indicates whether a step is optional or
required.

Comment by Kristen J Eberlein on 29 September 2022

I think the phrase "to highlight elements" is a little off. Maybe "render generated text"? And how
about adding "Processors often add text or images to ensure that readers of the generated
content understand whether the step is optional or required." to the end of the example?

Disposition: Unassigned

@props
Specifies metadata about the element. New attributes can be specialized from the @props attribute.
This attribute supports conditional processing. If no value is specified but the attribute is specified on
a containing element within a map or within the related-links section, the value cascades from the
closest containing element.

The @props attribute takes a space-delimited set of values. However, when serving as a container
for generalized attributes, the attribute values will be more complex. See 8.4.4 Attribute
generalization (195) for more details.

@rev
Specifies a revision level of an element that identifies when the element was added or modified. It
can be used to flag outputs when it matches a run-time parameter. It cannot be used for filtering nor
is it sufficient to be used for version control. If no value is specified but the attribute is specified on a
containing element within a map or within the related-links section, the value cascades from the
closest containing element.

Comment by Kristen J Eberlein on 29 September 2022

I want to tweak this. How about the following? Also, neither definition describes what values are
permitted.

Specifies metadata that identifies when the element was added or the content of the element was
modified. The @rev attribute can be used for flagging. It cannot be used for filtering nor is it
sufficient to be used for version control. If no value is specified but the attribute is specified on a
containing element within a map or within the related-links section, the value cascades from the
closest containing element.

Disposition: Unassigned

@status
Specifies the modification status of the element. The following values are valid: "new", "changed",
"deleted", "unchanged", and "-dita-use-conref-target".

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 360 of 471

Simple table attributes
This group includes attributes that are defined only on the <simpletable> element: @keycol and
@relcolwidth. These attributes are listed in a group because the <simpletable> element is
frequently used as a specialization base.

@keycol (simpletable attributes)
Specifies the column that contains the content that represents the key to the tabular structure. If
@keycol is present and assigned a numerical value, the specified column is treated as a vertical
header.

@relcolwidth (simpletable attributes)
Specifies the width of each column in relationship to the width of the other columns. The value is a
space-separated list of relative column widths. Each column width is specified as a positive integer or
decimal number followed by an asterisk character.

For example, the value relcolwidth="1* 2* 3*" gives a total of 6 units across three columns.
The relative widths are 1/6, 2/6, and 3/6 (16.7%, 33.3%, and 50%). Similarly, the value
relcolwidth="90* 150*" causes relative widths of 90/240 and 150/240 (37.5% and 62.5%).

Table accessibility attributes
This group defines a set of attributes that promote table accessibility:

@headers
Specifies which entries in the current table provide headers for this cell. The @headers attribute
contains an unordered set of unique, space-separated tokens, each of which is an ID reference of an
entry from the same table.

@scope
Specifies that the current entry is a header for other table entries. The following values are valid:

col
Indicates that the current entry is a header for all cells in the column.

colgroup
Indicates that the current entry is a header for all cells in the columns that are spanned by this
entry.

row
Indicates that the current entry is a header for all cells in the row.

rowgroup
Indicates that the current entry is a header for all cells in the rows that are spanned by this entry.

-dita-use-conref-target
See 7.3.6 Using the -dita-use-conref-target value (149) for more information.

Universal attributes
This group defines a set of attributes that are available on almost all DITA elements. It includes all
elements in the ID, localization, and metadata attribute groups, as well as the following attributes:

@class (not for use by authors)
This attribute is not for use by authors. If an editor displays @class attribute values, do not edit
them. Specifies a default value that defines the specialization ancestry of the element. Its predefined
values allow DITA tools to work correctly with specialized elements. In a generalized DITA document
the @class attribute value in the generalized instance might differ from the default value for the
@class attribute for the element as given in the DTD or schema. See 8.3.6 The class attribute rules

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 361 of 471

and syntax (188) for more information. This attribute is specified on every element except for the
<dita> container element. It is always specified with a default value, which varies for each element.

@outputclass
Specifies a role that the element is playing. The role must be consistent with the basic semantic and
expectations for the element. In particular, the @outputclass attribute can be used for styling
during output processing; HTML output will typically preserve @outputclass for CSS processing.

Comment by robander
I don't like "The role must be consistent...", that seems like best practice that cannot be normative
– and I could easily say outputclass="flashy" which makes my element show up with sparkles, and
has nothing to do with "the basic semantic and expectations for the element".
Disposition: Unassigned

9.9.2 Universal attribute group
The universal attribute group defines a set of common attributes that are available on almost every DITA
element. The universal attribute group includes all attributes from the ID, localization, and metadata
attribute groups, plus the @class and @outputclass attributes.

Comment by Kristen J Eberlein on 29 December 2021

This is something wrong with the organizational structure of this topic ... Look at it in outline form, and
check that the sections, titles, and content all make logical sense with the topic title of "Universal
attribute group".

Disposition: Unassigned

Common attribute groups
The following attribute groups are referenced in this specification. They are also used in the grammar files
when the element attributes are defined.

Universal attributes
Includes @class and @outputclass, along with every attribute in the ID, localization, and
metadata attribute groups.

ID attributes

This group includes the attributes that enable the naming and referencing of elements: @conaction,
@conkeyref, @conref, @conrefend, and @id.

Localization attributes

This group includes attributes that are related to translation and localization: @dir, @translate,
and @xml:lang.

Metadata attributes

Comment by Kristen J Eberlein on 31 December 2021

Why do we need to mention that two attributes are available for specialization here? I think it
makes the paragraph hard to read.

Disposition: Unassigned

This group includes common metadata attributes, two of which are available for specialization:
@base, @importance, @props, @rev, and @status.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 362 of 471

The base DITA vocabulary from OASIS includes several specializations of @props: @audience,
@deliveryTarget, @otherprops, @platform, and @product. These attributes are defined as
attribute-extension domains. By default, they are integrated into all OASIS-provided document-type
shells, but they can be made unavailable by implementing custom document-type shells.

Comment by Kristen J Eberlein on 29 December 2021

Why do we provide information about specialization and custom document-type shells here? I
think that information could be removed.

Disposition: Unassigned

Universal attribute definitions
The universal attributes for OASIS DITA elements are defined below. Specialized attributes, which are
part of the OASIS distribution but are only available when explicitly included in a shell, are noted in the
list.

@audience (specialized attribute)
Indicates the intended audience for the element. If no value is specified but the attribute is specified
on a containing element within a map or within the related-links section, the value cascades from the
closest containing element.

@base
Specifies metadata about the element. It is often used as a base for specialized attributes that have a
simple syntax for values, but which are not conditional processing attributes.

The @base attribute takes a space-delimited set of values. However, when serving as a container for
generalized attributes, the attribute values will be more complex. See 8.4.4 Attribute generalization
(195) for more details.

@class (not for use by authors)
This attribute is not for use by authors. If an editor displays @class attribute values, do not edit
them. Specifies a default value that defines the specialization ancestry of the element. Its predefined
values allow DITA tools to work correctly with specialized elements. In a generalized DITA document
the @class attribute value in the generalized instance might differ from the default value for the
@class attribute for the element as given in the DTD or schema. See 8.3.6 The class attribute rules
and syntax (188) for more information. This attribute is specified on every element except for the
<dita> container element. It is always specified with a default value, which varies for each element.

@conaction
Specifies how the element content will be pushed into a new location. The following values are valid:

mark
The element acts as a marker when pushing content before or after the target, to help ensure
that the push action is valid. The element with conaction="mark" also specifies the target of
the push action with @conref. Content inside of the element with conaction="mark" is not
pushed to the new location.

pushafter
Content from this element is pushed after the location specified by @conref on the element with
conaction="mark". The element with conaction="pushafter" is the first sibling element
after the element with conaction="mark".

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 363 of 471

pushbefore
Content from this element is pushed before the location specified by @conref on the element
with conaction="mark". The element with conaction="pushbefore" is the first sibling
element before the element with conaction="mark".

pushreplace
Content from this element replaces any content from the element referenced by the @conref
attribute. A second element with conaction="mark" is not used when using
conaction="pushreplace".

-dita-use-conref-target
See 7.3.6 Using the -dita-use-conref-target value (149) for more information.

See 7.3.2 The conaction attribute (140) for examples and details about the syntax.

@conkeyref
Specifies a key name or a key name with an element ID that acts as an indirect reference to reusable
content. The referenced content is used in place of the content of the current element. See 7.3.4 The
conkeyref attribute (148) for more details about the syntax and behaviors.

@conref
Specifies a URI that references a DITA element. The referenced content is used in place of the
content of the current element. See 7.3.5 The conref attribute (148) for examples and details about
the syntax.

@conrefend
Specifies a URI that references the last element in a sequence of elements, with the first element of
the sequence specified by @conref. The referenced sequence of elements is used in place of the
content of the current element. See 7.3.3 The conrefend attribute (144) for examples and details
about the syntax.

@deliveryTarget (specialized attribute)
Specifies the intended delivery target of the content, for example, "html", "pdf", or "epub". If no value
is specified but the attribute is specified on a containing element within a map or within the related-
links section, the value cascades from the closest containing element.

@dir

Identifies or overrides the text directionality. The following values are valid:

lro
Indicates an override of the Unicode Bidirectional Algorithm, forcing the element into left-to-right
mode.

ltr
Indicates left-to-right.

rlo
Indicates an override of the Unicode Bidirectional Algorithm, forcing the element into right-to-left
mode.

rtl
Indicates right-to-left.

-dita-use-conref-target
See 7.3.6 Using the -dita-use-conref-target value (149) for more information.

See 4.2.2 The dir attribute (50) for more information.

@id
Specifies an identifier for the current element. This ID is the target for references by @href and
@conref attributes and for external applications that refer to DITA or LwDITA content. This attribute

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 364 of 471

is defined with the XML data type NMTOKEN, except where noted for specific elements within the
language reference.

See 6.1 id attribute (93) for more details.

@importance
Specifies the importance or priority that is assigned to an element. The following values are valid:
"default", "deprecated", "high", "low", "normal", "obsolete", "optional", "recommended", "required",
"urgent", and "-dita-use-conref-target". This attribute is not used for conditional processing, although
applications might use the value of the @importance attribute to highlight elements. For example, in
steps of a task topic, the value of the @importance attribute indicates whether a step is optional or
required.

Comment by Kristen J Eberlein on 29 September 2022

I think the phrase "to highlight elements" is a little off. Maybe "render generated text"? And how
about adding "Processors often add text or images to ensure that readers of the generated
content understand whether the step is optional or required." to the end of the example?

Disposition: Unassigned

@otherprops (specialized attribute)
Specifies a property or properties that provide selection criteria for the element. Alternatively, the
@props attribute can be specialized to provide a new metadata attribute instead of using the general
@otherprops attribute. If no value is specified but the attribute is specified on a containing element
within a map or within the related-links section, the value cascades from the closest containing
element.

@outputclass
Specifies a role that the element is playing. The role must be consistent with the basic semantic and
expectations for the element. In particular, the @outputclass attribute can be used for styling
during output processing; HTML output will typically preserve @outputclass for CSS processing.

Comment by robander
I don't like "The role must be consistent...", that seems like best practice that cannot be normative
– and I could easily say outputclass="flashy" which makes my element show up with sparkles, and
has nothing to do with "the basic semantic and expectations for the element".
Disposition: Unassigned

@platform (specialized attribute)
Indicates operating system and hardware. If no value is specified but the attribute is specified on a
containing element within a map or within the related-links section, the value cascades from the
closest containing element.

Comment by robander
I think this could specify a platform that is not an operating system or hardware, right? The current
definition explicitly limits platform to those two … maybe "Specifies a platform or platforms to
which the element applies, such as the operating system or hardware relevant to a task."
Disposition: Unassigned

@product (specialized attribute)
Specifies the name of the product to which the element applies. If no value is specified but the
attribute is specified on a containing element within a map or within the related-links section, the
value cascades from the closest containing element.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 365 of 471

@props
Specifies metadata about the element. New attributes can be specialized from the @props attribute.
This attribute supports conditional processing. If no value is specified but the attribute is specified on
a containing element within a map or within the related-links section, the value cascades from the
closest containing element.

The @props attribute takes a space-delimited set of values. However, when serving as a container
for generalized attributes, the attribute values will be more complex. See 8.4.4 Attribute
generalization (195) for more details.

@rev
Specifies a revision level of an element that identifies when the element was added or modified. It
can be used to flag outputs when it matches a run-time parameter. It cannot be used for filtering nor
is it sufficient to be used for version control. If no value is specified but the attribute is specified on a
containing element within a map or within the related-links section, the value cascades from the
closest containing element.

Comment by Kristen J Eberlein on 29 September 2022

I want to tweak this. How about the following? Also, neither definition describes what values are
permitted.

Specifies metadata that identifies when the element was added or the content of the element was
modified. The @rev attribute can be used for flagging. It cannot be used for filtering nor is it
sufficient to be used for version control. If no value is specified but the attribute is specified on a
containing element within a map or within the related-links section, the value cascades from the
closest containing element.

Disposition: Unassigned

@status
Specifies the modification status of the element. The following values are valid: "new", "changed",
"deleted", "unchanged", and "-dita-use-conref-target".

@translate
Specifies whether the content of the element should be translated. The following values are valid:
"yes", "no", and "-dita-use-conref-target".

See F Element-by-element recommendations for translators (443) for suggested processing defaults
for each element.

Comment by Kristen J Eberlein on 31 December 2021

Does F Element-by-element recommendations for translators (443) really provide suggested
processing defaults for each element? I thought it covered whether an element was block or in-line
and whether there were considerations that translators needed to be aware of.

Disposition: Unassigned

@xml:lang
Specifies the language and optional locale of the content that is contained in an element. Valid values
are language tokens or the null string. The @xml:lang attribute and its values are described in the
Extensible Markup Language 1.0 specification, fifth edition.

Comment by Kristen J Eberlein on 29 September 2022

Do we also want to direct readers to the architectural topics about the @xml:lang attribute?

Disposition: Unassigned

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 366 of 471

http://www.w3.org/TR/REC-xml/#sec-lang-tag

Related concepts
Filtering based on metadata attributes (158)
When rendering content, a conditional processing profile can be used to specify whether an
element's content is filtered based on its conditional processing attributes.

Translation and localization (47)
DITA has markup that facilitates translation and localization. This markup includes the @xml:lang
attribute, the @dir attribute, and the @translate attribute.

Specialization (185)
The specialization feature of DITA allows for the creation of new element types and attributes that are
explicitly and formally derived from existing types. This facilitates interchange of conforming DITA
content and ensures a minimum level of common processing for all DITA content. It also allows
specialization-aware processors to add specialization-specific processing to existing base
processing.

DTD: Coding requirements for attribute-domain modules (406)
The vocabulary modules that define attribute domains have additional coding requirements. The
module must include a parameter entity for the new attribute, which can be referenced in document-
type shells, as well as a general entity that specifies the contribution to the @specializations
attribute for the attribute domain.

9.9.3 Common attributes
The common attributes topic collects defines most of the attributes that are used on more than one base
element.

Common attribute groups
The following groups are referenced in this specification, and they are also used in grammar files when
defining attributes for elements.

Architectural attributes

This group includes a set of attributes that are defined for document-level elements such as
<topic> and <map>: @DITAArchVersion, @specializations, and @xmlns:ditaarch.

Common map attributes

This group includes attributes that are frequently used on map elements: @cascade, @chunk,
@collection-type, @keyscope, @linking, @processing-role, @search, @toc, and
@subjectrefs.

Complex table attributes

This group includes attributes that are defined on table elements but not simple table elements.
These attributes are part of the OASIS Exchange Table Model, unless otherwise noted. Table
elements generally use only a subset of the attributes that are defined in this group. This group
contains the following attributes: @align, @char, @charoff, @colsep, @rowheader, @rowsep,
and @valign.

Data-element attributes
Includes attributes defined on <data> and its many specializations: @datatype, @name, and
@value

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 367 of 471

Date attributes
Includes attributes that take date values, and are defined on metadata elements that work with date
information: @expiry and @golive

Display attributes

This group includes attributes that affect the rendering of many elements: @expanse, @frame, and
@scale.

Inclusion attributes
Includes attributes defined on <include> and its specializations: @encoding and @parse.

Link-relationship attributes

This group includes attributes whose values can be used for representing navigational relationships:
@format, @href, @type, and @scope.

Simple table attributes

Comment by Kristen J Eberlein on 29 December 2021

If I have jumped to this place in a document from the element-reference topic, I want the attributes
listed here in the "Simple table group" to be hyperlinked to the actual definition.

Disposition: Unassigned

This group includes attributes that are defined only on the <simpletable> element: @keycol and
@relcolwidth. These attributes are listed in a group because the <simpletable> element is
frequently used as a specialization base.

Table accessibility attributes

This group contains attributes that are defined on the <stentry> element and its specializations:
@headers (373) and @scope (as defined on <stentry>) (378).

Other attributes (not in a group)

These are attributes that are used in the same way on more than one base element, but they are not
formally grouped together: @compact, @duplicates, @impose-role, @otherrole, @role, and
@title-role.

Common attribute definitions
Common attributes, including those in the groups listed above, are defined as follows.

@align (complex table attributes)
Specifies the horizontal alignment of text in table entries. The following values are valid:

left
Indicates left alignment of the text.

right
Indicates right alignment of the text.

center
Indicates center alignment of the text.

justify
Justifies the contents to both the left and the right.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 368 of 471

char
Indicates character alignment. The text is aligned with the first occurrence of the character
specified by the @char attribute.

-dita-use-conref-target
See 7.3.6 Using the -dita-use-conref-target value (149) for more information.

The @align attribute is available on the following table elements: <colspec>, <entry>, and
<tgroup>.

@cascade (common map attributes)

Specifies how metadata attributes cascade within a map. The specification defines the following
values:

merge
Indicates that the metadata attributes cascade, and that the values of the metadata attributes
are additive. This is the processing default for the @cascade attribute.

nomerge
Indicates that the metadata attributes cascade, but that they are not additive for <topicref>
elements that specify a different value for a specific metadata attribute. If the cascading value for
an attribute is already merged based on multiple ancestor elements, that merged value
continues to cascade until a new value is encountered. That is, setting cascade="nomerge"
does not undo merging that took place on ancestor elements.

Processors can also define custom, implementation-specific tokens for this attribute.

See 5.3.1 Cascading of metadata attributes in a DITA map (69) for more information about how this
attribute interacts with metadata attributes.

@char (complex table attributes)
Specifies the alignment character, which is the character that is used for aligning the text in table
entries. This attribute applies when align="char". A value of "" (the null string) means there is no
aligning character.

For example, if align="char" and char="." are specified, then text in the table entry aligns with
the first occurrence of the period within the entry. This might be useful if decimal alignment is
required.

The @char attribute is available on the following table elements: <colspec> and <entry>.

@charoff (complex table attributes)
Specifies the horizontal offset of the alignment character that is specified by the @char attribute. The
value is a greater-than-zero number that is less than or equal to 100. It represents the percentage of
the current column width by which the text is offset to the left of the alignment character.

For example, if align="char", char=".", and charoff="50" are all specified, then text in the
table entry is aligned 50% of the distance to the left of the first occurrence of the period character
within the table entry.

The @charoff attribute is available on the following table elements: <colspec> and <entry>.

@chunk (common map attributes)
Specifies how a processor should render a map or branch of a map. For example, it can be used to
specify that individual topic documents should be rendered as a single document, or that a single
document with multiple topics should be rendered as multiple documents.

The following values are valid:

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 369 of 471

combine
Instructs a processor to combine the referenced source documents for rendering purposes. This
is intended for cases where a publishing process normally results in a single output artifact for
each source XML document.

split
Instructs a processor to split each topic from the referenced source document into its own
document for rendering purposes. This is intended for cases where a publishing process
normally results in a single output artifact for each source XML document, regardless of how
many DITA topics exist within each source document.

Processors can also define custom, implementation-specific tokens for this attribute.

For a detailed description of the @chunk attribute and its usage, see 5.4 Chunking (77).

@collection-type (common map attributes)
Specifies how topics or links relate to each other. The processing default is "unordered", although no
default is specified in the OASIS-provided grammar files. The following values are valid:

unordered
Indicates that the order of the child topics is not significant.

sequence
Indicates that the order of the child topics is significant. Output processors will typically link
between them in order.

choice
Indicates that one of the children should be selected.

family
Indicates a tight grouping in which each of the referenced topics not only relates to the current
topic but also relate to each other.

Comment by Kristen J Eberlein on 28 September 2022

Here is the content from the "DITA map attributes" topic:

@collection-type
The @collection-type attribute specifies how the children of a <topicref> element
relate to their parent and to each other. This attribute, which is set on the parent element,
typically is used by processors to determine how to generate navigation links in the
rendered topics. For example, a @collection-type value of "sequence" indicates that
children of the specifying <topicref> element represent an ordered sequence of
topics; processors might add numbers to the list of child topics or generate next/previous
links for online presentation. This attribute is available in topics on the <linklist> and
<linkpool> elements, where it has the same behavior. Where the @collection-
type attribute is available on elements that cannot directly contain elements, the
behavior of the attribute is undefined.

Disposition: Unassigned

Comment by Kristen J Eberlein on 28 September 2022

In the definitions of the supported values, do we want to refer to "resources" instead of
"topics"? Since we specify that @collection-type specifies "how topics or links relate to
each other" ...

Disposition: Unassigned

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 370 of 471

@colsep (complex table attributes)
Specifies whether to render column separators between table entries. The following values are valid:
"0" (no separators) and "1" (separators).

The @colsep attribute is available on the following table elements: <colspec>, <entry>,
<table>, and <tgroup>.

@compact
Specifies whether the vertical spacing between list items is tightened. The following values are valid:
"yes", "no", and "-dita-use-conref-target". Some DITA processors or output formats might not support
the @compact attribute.

@datatype (data-element attributes)
Specifies the type of data contained in the @value attribute or within the <data> element. A typical
use of @datatype will be the identifying URI for an XML Schema datatype.

@DITAArchVersion (architectural attributes)
Specifies the version of the DITA architecture that is in use. This attribute is in the namespace
http://dita.oasis-open.org/architecture/2005/. This attribute is specified in the topic
and map modules, and it uses a default value of the current version of DITA. The current default is
"2.0".

@duplicates
Specifies whether duplicate links are removed from a group of links. Duplicate links are links that
address the same resource using the same properties, such as link text and link role. How duplicate
links are determined is processor-specific. The following values are valid:

yes
Specifies that duplicate links are retained.

no
Specifies that duplicate links are removed.

-dita-use-conref-target
See 7.3.6 Using the -dita-use-conref-target value (149) for more information.

The suggested processing default is "yes" within <linklist> elements and "no" for other links.

Comment by robander on Dec 28 2021
"How duplicate links are determined is processor-specific" ==> this should be included in any
updates to standardize language around "implementation dependent".
Disposition: Unassigned

@encoding (inclusion attributes)

Comment by Kristen J Eberlein on 29 April 2019

Can we replace "should" in the following definition?

Disposition: Unassigned

Specifies the character encoding to use when translating the character data from the referenced
content. The value should be a valid encoding name. If not specified, processors may make attempts
to automatically determine the correct encoding, for example using HTTP headers, through analysis
of the binary structure of the referenced data, or the <?xml?> processing instruction when including
XML as text. The resource should be treated as UTF-8 if no other encoding information can be
determined.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 371 of 471

When parse="xml", standard XML parsing rules apply for the detection of character encoding. The
necessity and uses of @encoding for non-standard values of @parse are implementation-
dependent.

@expanse (display attributes)
Specifies the horizontal placement of the element. The following values are valid:

column
Indicates that the element is aligned with the current column margin.

page
Indicates that the element is placed on the left page margin for left-to-right presentation or the
right page margin for right-to-left presentation.

spread
Indicates that the object is rendered across a multi-page spread. If the output format does not
have anything that corresponds to spreads, then "spread" has the same meaning as "page".

textline
Indicates that the element is aligned with the left (for left-to-right presentation) or right (for right-
to-left presentation) margin of the current text line and takes indentation into account.

-dita-use-conref-target
See 7.3.6 Using the -dita-use-conref-target value (149) for more information.

For <table>, in place of the @expanse attribute that is used by other DITA elements, the @pgwide
attribute is used in order to conform to the OASIS Exchange Table Model.

Some processors or output formats might not support all values.

@expiry (date attributes)
Specifies the date when the information should be retired or refreshed. The date is specified using
the ISO 8601 format: YYYY-MM-DD, where YYYY is the year, MM is the month (01 to 12), and DD is
the day (01-31).

@format (link-relationship attributes)
Specifies the format of the resource that is referenced. See 6.2.1 The format attribute (94) for
detailed information on supported values and processing implications.

@frame (display attributes)
Specifies which portion of a border surrounds the element. The following values are valid:

all
Indicates that a line is rendered at the top, bottom, left, and right of the containing element.

bottom
Indicates that a line is rendered at the bottom of the containing element.

none
Indicates that no lines are rendered.

sides
Indicates that a line is rendered at the left and right of the containing element.

top
Indicates that a line is rendered at the top of the containing element.

topbot
Indicates that a line is rendered at the top and bottom of the containing element.

-dita-use-conref-target
See 7.3.6 Using the -dita-use-conref-target value (149) for more information.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 372 of 471

Some processors or output formats might not support all values.

@golive (date attributes)
Specifies the publication or general availability (GA) date. The date is specified using the ISO 8601
format: YYYY-MM-DD, where YYYY is the year, MM is the month (01 to 12), and DD is the day
(01-31).

@headers
Specifies which entries in the current table provide headers for this cell. The @headers attribute
contains an unordered set of unique, space-separated tokens, each of which is an ID reference of an
entry from the same table.

@href (link-relationship attributes)
Specifies a reference to a resource. See 6.2.2 The href attribute (95) for detailed information on
supported values and processing implications.

@impose-role
Specifies whether this element will impose its role on elements in a referenced map. The attribute is
ignored if the target of the reference is not a map or branch of a map. The following values are valid:

keeptarget
The role of the current reference is not imposed on the target of the reference. This is the default
for the unspecialized <topicref> element and for many convenience elements such as
<keydef>.

impose
The role of the current reference is imposed on the target of the reference. For example, if a
specialized topic reference <chapter> uses this value and references a map, a topic reference
that resolves in place of the <chapter> will be treated as if it were a chapter.

-dita-use-conref-target
See 7.3.6 Using the -dita-use-conref-target value (149) for more information.

See 6.2.2 The href attribute (95) for detailed information on supported values and processing
implications.

@keycol (simpletable attributes)
Specifies the column that contains the content that represents the key to the tabular structure. If
@keycol is present and assigned a numerical value, the specified column is treated as a vertical
header.

@keyref
Specifies a key name that acts as a redirectable reference based on a key definition within a map.
See 6.4.3 The keyref attribute (103) for information on using this attribute.

For HDITA, the equivalent of @keyref is @data-keyref

Comment by robander
The definiton above for @keyref should be synchronized with the definition in the linked section on
keys.
Disposition: Unassigned

@keys
Specifies one or more names for a resource. See 6.4.2 Setting key names with the keys attribute
(102) for information on using this attribute.

For HDITA, the equivalent of @keys is @data-keys

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 373 of 471

@keyscope (common map attributes)
Specifies that the element marks the boundaries of a key scope.

See 6.4.6 The keyscope attribute (105) for information on using this attribute.

Comment by Kristen J Eberlein on 28 September 2022

Here is the content from the "DITA map attributes" topic:

@keyscope
Defines a new scope for key definition and resolution, and gives the scope one or more
names. For more information about key scopes, see 6.4 Indirect key-based addressing (100).

Disposition: Unassigned

@linking (common map attributes)
Specifies linking characteristics of a topic specific to the location of this reference in a map. If the
value is not specified locally, the value might cascade from another element in the map (for cascade
rules, see 5.3.1 Cascading of metadata attributes in a DITA map (69)).

Comment by robander on Dec 28 2021
The text below matches 1.3 spec text but I'm nervous about "cannot link" type definition. It's
describing how to generate links based on the current context in the map - it's not describing what
the topic itself is allowed to link to, which is how I interpret "can".
Disposition: Unassigned

The following values are valid:

targetonly
A topic can only be linked to and cannot link to other topics.

sourceonly
A topic cannot be linked to but can link to other topics.

normal
A topic can be linked to and can link to other topics. Use this to override the linking value of a
parent topic.

none
A topic cannot be linked to or link to other topics.

-dita-use-conref-target
See 7.3.6 Using the -dita-use-conref-target value (149) for more information.

Comment by Kristen J Eberlein on 28 September 2022

Here is the content from the "DITA map attributes" topic:

@linking

By default, the relationships between the topics that are referenced in a map are reciprocal:

• Child topics link to parent topics and vice versa.
• Next and previous topics in a sequence link to each other.
• Topics in a family link to their sibling topics.
• Topics referenced in the table cells of the same row in a relationship table link to each

other. A topic referenced within a table cell does not (by default) link to other topics
referenced in the same table cell.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 374 of 471

http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part3-all-inclusive/langRef/attributes/commonMapAttributes.html#topicref-atts__linking

This behavior can be modified by using the @linking attribute, which enables an author or
information architect to specify how a topic participates in a relationship. The following values
are valid:

linking="none"
Specifies that the topic does not exist in the map for the purposes of calculating links.

linking="sourceonly"
Specifies that the topic will link to its related topics but not vice versa.

linking="targetonly"
Specifies that the related topics will link to it but not vice versa.

linking="normal"
Default value. It specifies that linking will be reciprocal (the topic will link to related topics,
and they will link back to it).

Authors also can create links directly in a topic by using the <xref> or <link> elements, but
in most cases map-based linking is preferable, because links in topics create dependencies
between topics that can hinder reuse.

Note that while the relationships between the topics that are referenced in a map are
reciprocal, the relationships merely imply reciprocal links in generated output that includes
links. The rendered navigation links are a function of the presentation style that is determined
by the processor.

Disposition: Unassigned

@name (data-element attributes)
Defines a unique name for the object.

Comment by robander
Do we need to specify the scope of "unique" here?
Disposition: Unassigned

@otherrole
Specifies an alternate role for a link relationship when the @role attribute is set to "other".

@parse (inclusion attributes)
Specifies the processing expectations for the referenced resource. Processors must support the
following values:

text

The contents should be treated as plain text. Reserved XML characters should be displayed,
and not interpreted as XML markup.

xml

The contents of the referenced resource should be treated as an XML document, and the
referenced element should be inserted at the location of the <include> element. If a fragment
identifier is included in the address of the content, processors must select the element with the
specified ID. If no fragment identifier is included, the root element of the referenced XML
document is selected. Any grammar processing should be performed during resolution, such
that default attribute values are explicitly populated. Prolog content must be discarded.

It is an error to use parse="xml" anywhere other than within <foreign> or a specialization
thereof.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 375 of 471

Processors may support other values for the @parse attribute with proprietary processing semantics.
Processors should issue warnings and use <fallback> when they encounter unsupported @parse
values. Non-standard @parse instructions should be expressed as URIs.

Note Proprietary @parse values will likely limit the portability and interoperability of DITA
content, so should be used with care.

@processing-role (common map attributes)
Specifies whether the referenced resource is processed normally or treated as a resource that is only
included in order to resolve references, such as key or content references. The following values are
valid:

normal
Indicates that the resource is a readable part of the information set. It is included in navigation
and search results. This is the default value for the <topicref> element.

resource-only
Indicates that the resource should be used only for processing purposes. It is not included in
navigation or search results, nor is it rendered as a topic. This is the default value for the
<keydef> element.

-dita-use-conref-target
See 7.3.6 Using the -dita-use-conref-target value (149) for more information.

If no value is specified but the attribute is specified on a containing element within a map or within the
related-links section, the value cascades from the closest containing element.

@relcolwidth (simpletable attributes)
Specifies the width of each column in relationship to the width of the other columns. The value is a
space-separated list of relative column widths. Each column width is specified as a positive integer or
decimal number followed by an asterisk character.

For example, the value relcolwidth="1* 2* 3*" gives a total of 6 units across three columns.
The relative widths are 1/6, 2/6, and 3/6 (16.7%, 33.3%, and 50%). Similarly, the value
relcolwidth="90* 150*" causes relative widths of 90/240 and 150/240 (37.5% and 62.5%).

@role
Specifies the role that a linked topic plays in relationship with the current topic.

For example, in a parent/child relationship, the role would be "parent" when the target is the parent of
the current topic, and "child" when the target is the child of the current topic. This can be used to sort
and classify links when rendering.

The following values are valid:

ancestor
Indicates a link to a topic above the parent topic.

child
Indicates a link to a direct child such as a directly nested or dependent topic.

cousin
Indicates a link to another topic in the same hierarchy that is not a parent, child, sibling, next, or
previous.

descendant
Indicates a link to a topic below a child topic.

friend
Indicates a link to a similar topic that is not necessarily part of the same hierarchy.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 376 of 471

next
Indicates a link to the next topic in a sequence.

other
Indicates any other kind of relationship or role. The type of role is specified as the value for the
@otherrole attribute.

parent
Indicates a link to a topic that is a parent of the current topic.

previous
Indicates a link to the previous topic in a sequence.

sibling
Indicates a link between two children of the same parent topic.

-dita-use-conref-target
See 7.3.6 Using the -dita-use-conref-target value (149) for more information.

@rowheader (complex table attributes)
Specifies whether the entries in the respective column are row headers. The following values are
valid:

firstcol
Indicates that entries in the first column of the table are row headers. This applies when the
@rowheader attribute is specified on the <table> element.

headers
Indicates that entries of the column that is described using the <colspec> element are row
headers. This applies when the @rowheader attribute is specified on the <colspec> element.

norowheader
Indicates that entries in the first column are not row headers. This applies when the
@rowheader attribute is specified on the <table> element.

-dita-use-conref-target
See 7.3.6 Using the -dita-use-conref-target value (149) for more information.

Note This attribute is not part of the OASIS Exchange Table Model upon which DITA tables are
based. Some processors or output formats might not support all values.

The @rowheader attribute is available on the following table elements: <table> and <colspec>.

@rowsep (complex table attributes)
Specifies whether to render row separators between table entries. The following values are valid: "0"
(no separators) and "1" (separators).

The @rowsep attribute is available on the following table elements: <colspec>, <entry>, <row>,
<table>, and <tgroup>.

@scale (display attributes)
Specifies the percentage by which fonts are resized in relation to the normal text size. The value of
this attribute is a positive integer. When used on <table> or <simpletable>, the following values
are valid: "50", "60", "70", "80", "90", "100", "110", "120", "140", "160", "180", "200", and -dita-use-
conref-target (149).

This attribute is primarily useful for print-oriented display. Some processors might not support all
values.

If the @scale attribute is specified on an element that contains an image, the image is not scaled.
The image is scaled only if a scaling property is explicitly specified for the <image> element.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 377 of 471

@scope (link-relationship attributes)
Specifies the closeness of the relationship between the current document and the referenced
resource. The following values are valid: "local", "peer", "external", and "-dita-use-conref-target".

See 6.2.3 The scope attribute (96) for detailed information on supported values and processing
implications.

@scope
Specifies that the current entry is a header for other table entries. The following values are valid:

col
Indicates that the current entry is a header for all cells in the column.

colgroup
Indicates that the current entry is a header for all cells in the columns that are spanned by this
entry.

row
Indicates that the current entry is a header for all cells in the row.

rowgroup
Indicates that the current entry is a header for all cells in the rows that are spanned by this entry.

-dita-use-conref-target
See 7.3.6 Using the -dita-use-conref-target value (149) for more information.

@search (common map attributes)
Specifies whether the target is available for searching. If the value is not specified locally, the value
might cascade from another element in the map (for cascade rules, see 5.3.1 Cascading of metadata
attributes in a DITA map (69)). The following values are valid: "yes", "no", and "-dita-use-conref-
target".

Comment by Kristen J Eberlein on 28 September 2022

Here is the content from the "DITA map attributes" topic:

@search
Specifies whether the topic is included in search indexes.

Disposition: Unassigned

@specializations (architectural attributes)
Specifies the attribute-domain specializations that are included in the document-type shell. This
attribute is set as a default within the document-type shell. The value varies depending on what
domains are integrated into the document-type shell. For example, a grammar file that includes the
specialized attributes @audience, @deliveryTarget, and @newBaseAtt would set the value to
@props/audience @props/deliveryTarget @base/newBaseAtt.

@subjectrefs (common map attributes)
Specifies one or more keys that are each defined by a subject definition in a subject scheme map.
Multiple values are separated by white space.

@title-role (REQUIRED)
Specifies the role that the alternative title serves. Multiple roles are separated by white space. The
following roles are defined in the specification: "linking", "navigation", "search", "subtitle", and "hint".

Processors can define custom values for the @title-role attribute.

@toc (common map attributes)
Specifies whether a topic appears in the table of contents (TOC) based on the current map context. If
the value is not specified locally, the value might cascade from another element in the map (for

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 378 of 471

cascade rules, see 5.3.1 Cascading of metadata attributes in a DITA map (69)). The following values
are valid:

yes
The topic appears in a generated TOC.

no
The topic does not appear in a generated TOC.

-dita-use-conref-target
See 7.3.6 Using the -dita-use-conref-target value (149) for more information.

Comment by Kristen J Eberlein on 28 September 2022

Here is the content from the "DITA map attributes" topic:

@toc
Specifies whether topics are excluded from navigation output, such as a Web site map or an
online table of contents. By default, <topicref> hierarchies are included in navigation
output; relationship tables are excluded.

Disposition: Unassigned

@type (link-relationship attributes)
Describes the target of a reference. See 6.2.4 The type attribute (97) for detailed information on
supported values and processing implications.

@value (data-element attributes)
Specifies a value associated with the current property or element.

@valign (complex table attributes)
Specifies the vertical alignment of text in table entries. The following values are valid:

bottom
Indicates that text is aligned with the bottom of the table entry.

middle
Indicates that text is aligned with the middle of the table entry.

top
Indicates that text is aligned with the top of the table entry.

-dita-use-conref-target
See 7.3.6 Using the -dita-use-conref-target value (149) for more information.

The @valign attribute is available on the following table elements: <entry>, <tbody>, <thead>,
and <row>.

@xml:space
Specifies how to handle white space in the current element. This attribute is provided on <pre>,
<lines>, and on elements specialized from those. It ensures that parsers respect white space that
is part of the data in those elements, including line-end characters. When defined, it has a fixed value
of "preserve", making it a default property of the element that cannot be changed or deleted by
authors.

@xmlns:ditaarch (architectural attributes)
Declares the default DITA namespace. This namespace is declared as such in the RNG modules for
<topic> and <map>, but it is specified as an attribute in the equivalent DTD-based modules. The
value is fixed to "http://dita.oasis-open.org/architecture/2005/".

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 379 of 471

Related concepts
Cascading of metadata attributes in a DITA map (69)
Certain attributes cascade throughout a map, which facilitates attribute and metadata management.
When attributes cascade, they apply to the elements that are children of the element where the
attributes were specified. Cascading applies to a containment hierarchy, as opposed to a
specialization hierarchy.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 380 of 471

10 Conformance
An implementation is a conforming implementation of DITA if the implementation meets the conditions
that are described in Section 4.1. A document is a conforming DITA document if the document meets the
conditions in that are described in Section 4.2.

Conformance to the DITA specification allows documents and document types that are used with different
processors to produce the same or similar results with little or no reimplementation or modification.
Conformance also allows DITA specializations to work with any conforming DITA application, with at least
the same level of support available to unspecialized documents.

4.1 Conformance of DITA implementations

098 (395) The DITA specification defines several core features, as summarized in the
following list. Any implementation that supports a feature MUST conform to all rules
laid out in the section that describes the feature.

Comment by robander on 2017
It's quite possible the two keyref items should be combined. Left separate just because I could envision
applications that support keys, but not keyscope.

Also possible the pulling/pushing of conref items should be combined. But I can more easily envision a
distinction here - an editor that renders content references inline cannot know all instances of all topics
that would push content into the same topic.

Disposition: Unassigned

1. Specialization-based processing, as described in X.
2. Resolving links to elements in DITA documents, as described in section X.
3. Resolving @keyref attributes to a key defined in a map, as described in section X.
4. Resolving @keyref attributes across key scopes, as described in section X.
5. Pulling content references, as described in 7.3 Content reference (conref) (139)
6. Pushing content references, as described in 7.3 Content reference (conref) (139).
7. Resolving conditional processing based on DITAVAL documents, as described in 7.4 Conditional

processing (154).
8. Resolving branch filtering markup, as described in 7.5 Branch filtering (165).
9. Resolving @chunk attributes, as described in 5.4 Chunking (77).

In addition, certain DITA elements have normative rules associated regarding how to render or process
those elements.

1. <desc>, as described in 9.3.2.5 desc (216)
2. <draft-comment>, as described in 9.3.2.10 draft-comment (219)
3. <image>, as described in 9.3.2.18 image (225)
4. <linklist>, as described in 9.3.5.3 linklist (253)
5. <pre>, as described in 9.3.2.31 pre (237)
6. <q>, as described in 9.3.2.32 q (237)
7. <related-links>, as described in 9.3.1.6 related-links (210)
8. <relcolspec>, as described in 9.4.1.5 relcolspec (267)

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 381 of 471

9. <reltable>, as described in 9.4.1.8 reltable (269)
10.<shortdesc>, as described in 9.3.1.7 shortdesc (211)
11.<title>, as described in 9.3.1.8 title (212)
12.<titlealt>, as described in 9.3.1.9 titlealt (213)
13.<topichead>, as described in 9.7.6.5 topichead (329)

099 (395) Conforming DITA implementations SHOULD include a conformance statement that
gives the version of the DITA specification that is supported, indicate if all features
from the list above are supported, and indicate that all normative rendering rules
are supported.

100 (395) If only a subset of features is supported, implementations SHOULD indicate which
features are (or are not) supported. If an implementation supports rendering DITA
elements but does not render all elements as described above, that application
SHOULD indicate which elements are (or are not) supported.

101 (395) Not all DITA features are relevant for all implementations. For example, a DITA
editor that does not render content references in context does not need to conform
to rules regarding the @conref attribute. However, any application that renders
content references MUST conform to the rules described in7.3 Content reference
(conref) (139).

102 (395) Implementations that support only a subset of DITA features are considered
conforming as long as all supported features follow the requirements that are given
in the DITA specification. An implementation that does not support a particular
feature MUST be prepared to interoperate with other implementations that do
support the feature.

4.2 Conformance of DITA documents
A document conforms with the DITA standard if it meets all of the following conditions.

1. 103
(
395)

A DITA document that refers to document type shells distributed by
OASIS MUST be valid according to both the grammar files and any
assertions provided in the language reference.

2. 104
(
395)

If a DITA document refers to a custom document type shell, that shell
MUST also conform to the rules laid out in X.X.X.X Rules for
document-type shells.

3. 105
(
395)

If a DITA document's custom document type shell includes
constraints, that shell MUST also conform to the rules laid out in
X.X.X.X Constraint rules

4. 106
(
395)

If a DITA document uses specialized elements or attributes, those
elements or attributes MUST also conform to the rules laid out in
X.X.X Specialization rules for element types, X.X.X Specialization
rules for attributes, and X.X.X Class attribute rules and syntax.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 382 of 471

http://example.com
http://example.com
http://example.com
http://example.com
http://example.com
http://example.com
http://example.com

A Acknowledgments
(Non-normative) Many current and past members of the OASIS DITA Technical Committee participated in
the creation of this specification and are gratefully acknowledged.

Robert Anderson, Oracle
Deb Bissantz, Vasont Systems
Bill Burns, HP Inc.
Carsten Brennecke, SAP SE
Stan Doherty, Individual member
Kristen James Eberlein, Eberlein Consulting LLC
Carlos Evia, Virginia Tech
Nancy Harrison, Individual member
Alan Houser, Individual member
Scott Hudson, ServiceNow
Gershon Joseph, Precision Content Authoring Solutions Inc.
Eliot Kimber, ServiceNow
Zöe Lawson, Synopsys, Inc.
Tom Magliery, JustSystems
Chris Nitchie, Individual member
Keith Schengili-Roberts, Individual member
Eric Sirois, IXIASOFT
Dawn Stevens, Comtech Services, Inc.
Bob Thomas, Individual member
Frank Wegmann, Individual member

In addition, the OASIS DITA Technical Committee also would like to recognize the following people for
their insights and support:

Silke Achterfeld
Robert Johnson
Jarno Elovirta

The DITA Technical Committee used the following applications to work with the DITA source:

• Antenna House Formatter
• Congility Content Server
• DITA Open Toolkit
• Oxygen Content Fusion
• Oxygen XML Editor
• XMetaL Author Enterprise

We are grateful to Antenna House for providing licenses for Antenna House Formatter, Mekon for
providing an instance of Congility Content Server, and Syncro Soft for the use of Oxygen Content Fusion.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 383 of 471

B Aggregated RFC-2119 statements
This appendix contains all the normative statements from the DITA 2.0 specification. They are aggregated
here for convenience in this non-normative appendix.

Item Conformance statement

001 (18) A DITA document MUST have as its root element one of the following elements:

• <map> or a specialization of the <map> element
• <topic> or a specialization of the <topic> element
• <dita>, which cannot be specialized, but which allows documents with multiple sibling topics

Comment by robander on 26 may 2021
picky comment: a <dita> root element (singular) only allows ONE document with sibling
topics. Also, not to over-complicate, but an ordinary topic also allows sibling topics (as
children), so what really distinguishes this is that it allows "root" siblings, but I don't think we
have a word for that.
Disposition: Unassigned

002 (22) Files that contain DITA content SHOULD use the following file extensions:

DITA topics
*.dita (preferred)
*.xml

DITA maps
*.ditamap

Conditional processing profiles
*.ditaval

003 (48) If the root element of a map or a top-level topic has no value for the @xml:lang attribute, a processor
SHOULD assume a default value. The default value of the processor can be either fixed, configurable,
or derived from the content itself, such as the @xml:lang attribute on the root map.

004 (48) When a @conref or @conkeyref attribute is used to include content from one element into another,
the processor MUST use the effective value of the @xml:lang attribute from the referenced element. If
the referenced element does not have an explicit value for the @xml:lang attribute, the processor
SHOULD use the default value.

005 (49) Processors SHOULD render each element in a way that is appropriate for its language as identified by
the @xml:lang attribute.

006 (51) DITA processors SHOULD fully support the Unicode Bidirectional Algorithm. This ensures that
processors can implement the script and directionality for each language that is used in a document.

007 (54) In some cases, preserving the role of a referencing element might result in out-of-context content. For
example, a <chapter> element in one bookmap could pull in a <part> element from another
bookmap, where that referenced <part> also contains nested <chapter> elements. Treating the
<part> element as a <chapter> will result in a chapter that nests other chapters, which is not valid in
bookmap and might not be understandable by processors. The result is implementation specific.
Processors MAY choose to treat this as an error, issue a warning, or simply assign new roles to the
problematic elements.

008 (59) A DITA map can reference a subject scheme map by using a <mapref> element. Processors also MAY
provide parameters by which subject scheme maps are referenced.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 384 of 471

Item Conformance statement

009 (61) The following behavior is expected of processors in regard to subject scheme maps:

• Authoring tools SHOULD use these lists of controlled values to provide lists from which authors
can select values when they specify attribute values.

• Authoring tools MAY give an organization a list of readable labels, a hierarchy of values to
simplify selection, and a shared definition of the value.

• Authoring tools MAY support accessing and displaying the content of the subject definition
resource in order to provide users with a detailed explanation of the subject.

010 (61) If an enumeration is bound, processors SHOULD validate attribute values against the controlled values
that are defined in the subject scheme map. For authoring tools, this validation prevents users from
entering misspelled or undefined values. Recovery from validation errors is implementation specific.

011 (62) The following behavior is expected of processors in regard to subject scheme maps:

• Processors SHOULD be aware of the hierarchies of attribute values that are defined in subject
scheme maps for purposes of filtering, flagging, or other metadata-based categorization.

• Processors SHOULD validate that the values of attributes that are bound to controlled values
contain only valid values from those sets. This requirement is needed because basic XML
parsers do not validate the list of controlled values. If the controlled values are part of a named
key scope, the scope name is ignored for the purpose of validating the controlled values.

• Processors SHOULD check that all values listed for an attribute in a DITAVAL file are bound to
the attribute by the subject scheme before filtering or flagging. If a processor encounters values
that are not included in the subject scheme, it SHOULD issue a warning.

012 (63) Processors SHOULD apply the following algorithm when they apply filtering and flagging rules to
attribute values that are defined as a hierarchy of controlled values and bound to an enumeration:

1. If an attribute specifies a value in the taxonomy, and a DITAVAL or other categorization tool is
configured with that value, the rule matches.

2. Otherwise, if the parent value in the taxonomy has a rule, that matches.
3. Otherwise, continue up the chain in the taxonomy until a matching rule is found.

013 (70) When determining the value of an attribute, processors MUST evaluate each attribute on each
individual element in a specific order. This order is specified in the following list. Applications MUST
continue through the list until a value is established or until the end of the list is reached, at which point
no value is established for the attribute. In essence, the list provides instructions on how processors can
construct a map where all attribute values are set and all cascading is complete.

014 (70) For attributes within a map, the following processing order MUST occur:

1. The @conref and @keyref attributes are evaluated.
2. The explicit values specified in the document instance are evaluated. For example, a

<topicref> element with the @toc attribute set to "no" will use that value.
3. The default or fixed attribute values are evaluated. For example, the @toc attribute on the

<reltable> element has a default value of "no".
4. The default values that are supplied by a controlled values file are evaluated.
5. The attributes cascade.
6. The processing-supplied default values are applied.
7. After the attributes are resolved within the map, any values that do not come from processing-

supplied defaults will cascade to referenced maps.

For example, most processors will supply a default value of toc="yes" when no @toc
attribute is specified. However, a processor-supplied default of toc="yes" does not override a
value of toc="no" that is set on a referenced map. If the toc="yes" value is explicitly
specified, is given as a default through a DTD, RNG, or controlled values file, or cascades from

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 385 of 471

Item Conformance statement

a containing element in the map, it will override a toc="no" setting on the referenced map.
See 5.3.3 Map-to-map cascading behaviors (73) for more details.

8. Repeat steps 1 to 4 for each referenced map.
9. The attributes cascade within each referenced map.
10. The processing-supplied default values are applied within each referenced map.
11. Repeat the process for maps referenced within the referenced maps.

015 (71) If no value is set for the @merge attribute and no value cascades from a containing element, processors
SHOULD assume a default of "merge".

016 (71) Implementers MAY define their own custom, implementation-specific tokens for the @merge attribute.
To avoid name conflicts between implementations or with future additions to the standard,
implementation-specific tokens SHOULD consist of a prefix that gives the name or an abbreviation for
the implementation followed by a colon followed by the token or method name. For example, a
processor might define the token "appToken:audience" in order to specify cascading and merging
behaviors for only the @audience attribute.

017 (71) The predefined values for the @cascade attribute MUST precede any implementation-specific tokens,
for example, cascade="merge appToken:audience".

018 (77) The following rules apply to all values of the @chunk attribute:

• When the source document organization has no effect on published output, such as when
producing a single PDF or EPUB, processors MAY ignore the @chunk attribute.

• When the @chunk attribute results in more or fewer documents based on the combine or
split tokens, the hierarchy of topics within the resulting map and topic organization SHOULD
match the hierarchy in the original topics and maps.

• When the @chunk attribute results in more or fewer documents, processors MAY create their
own naming schemes for those reorganized documents.

• The @chunk attribute values apply to DITA topic documents referenced from a map.
Processors MAY apply equivalent processing to non-DITA documents.

019 (93) Within a map document, the values of the @id attributes for all elements SHOULD be unique. When
two elements within a map have the same value for the @id attribute, processors MUST resolve
references to that ID to the first element with the given ID value in document order.

020 (95) If the actual format of the referenced content differs from the effective value of the @format attribute,
and a processor is capable of identifying such cases, it MAY recover gracefully and treat the content as
its actual format. The processor MAY also issue a message.

021 (95) The value of the @href attribute MUST be a valid URI reference [RFC 3986]. If the value of the @href
attribute is not a valid URI reference, an implementation MAY generate an error message. It MAY also
recover from this error condition by attempting to convert the value to a valid URI reference.

022 (97) For the @scope attribute, processors can consider additional URI schemes as "external" by default.
Processors MUST always consider relative URIs as "local" by default.

023 (97) Applications MAY issue a warning when the specified or inherited @type attribute value does not match
the target or a specialization ancestor of the target. Applications MAY recover from this error condition
by using the correct value detected.

024 (98) DITA processors MAY ignore queries on URI references to DITA resources. URI references that
address components in the same document MAY consist of just the fragment identifier.

025 (110) If both @keyref and @href attributes are specified on an element, the @href value MUST be used as
a fallback address when the key name is undefined. If both @conkeyref and @conref attributes are

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 386 of 471

http://www.ietf.org/rfc/rfc3986.txt

Item Conformance statement

specified on an element, the @conref value MUST be used as a fallback address when the key name
is undefined.

026 (110) The effective key definitions for a key space might be affected by conditional processing (filtering).
Processors SHOULD perform conditional processing before determining the effective key definitions.
However, processors might determine effective key definitions before filtering. Consequently, different
processors might produce different effective bindings for the same map when there are key definitions
that might be filtered out based on their filtering attributes.

027 (110) If a topic that contains key references is reused in multiple key scopes within a given root map such that
its references resolve differently in each use context, processors MUST produce multiple copies of the
source topic in resolved output for each distinct set of effective key definitions that are referenced by the
topic.

028 (110) If a referencing element contains a key reference with an undefined key, it is processed as if there were
no key reference, and the value of the @href attribute is used as the reference. If the @href attribute is
not specified, the element is not treated as a navigation link. If it is an error for the element to be empty,
an implementation MAY give an error message; it also MAY recover from this error condition by leaving
the key reference element empty.

029 (111) For topic references that use the @keyref attribute, the effective resource bound to the <topicref>
element is determined by resolving all intermediate key references. Each key reference is resolved
either to a resource addressed directly by URI reference in an @href attribute, or to no resource.
Processors MAY impose reasonable limits on the number of intermediate key references that they will
resolve. Processors SHOULD support at least three levels of key references.

030 (112) Processors MUST resolve variable text that is defined using keys by using the following sequence:

1. Effective text content is taken from the <keytext> element.
2. Effective text content is taken from the <titlealt> element with @title-role set to

"linking".
3. Effective text content is taken from the <titlealt> element with @title-role set to

"navigation".
4. Effective text content is taken from the <titlealt> element with @title-role set to a

processor-recognized value.
5. Effective text content is taken from the title of the referenced document, if available.
6. Effective text content is determined by the processor.

031 (113) When the effective content for a key reference element results in invalid elements, those elements
SHOULD be generalized to produce a valid result.

032 (137) Processors that support index ranges SHOULD do the following:

• Match @start and @end attributes by a character-by-character comparison with all characters
significant and no case folding occurring.

• Ignore @start and @end attributes if they occur on an <indexterm> element that has child
<indexterm> elements.

• Handle an end-of-range <indexterm> element that is nested within one or more
<indexterm> elements. The end-of-range <indexterm> element should have no content of
its own; if it contains content, that content is ignored.

Comment by Kristen J Eberlein

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 387 of 471

Item Conformance statement

Can we improve the phrasing of the two above list items? Robert and I think that they were
authored in order to communicate that if you want a range to be specified for a secondary
entry, it has to be done like this:

<indexterm>Potato
 <indexterm start="yellow">Yellow potatoes</indexterm>
</indexterm>

<indexterm>Potato
 <indexterm end="yellow"/>
<indexterm>

Disposition: Unassigned

• When index ranges with the same identifier overlap, the effective range is determined by
matching the earliest start-of-range element from the set of overlapping ranges with the latest
end-of-range element from the set of overlapping ranges.

• An unmatched start-of-range element is treated as a simple <indexterm>element.
• Ignore unmatched end-of-range <indexterm> elements.

033 (142) It is an error for two source topics to replace the same element. Applications MAY warn users if more
than one element attempts to replace a single target.

034 (144) The following markup rules apply when using or implementing @conrefend:

• The start and end elements of a range MUST be of the same type as the referencing element
or generalizable to the referencing element.

• The start and end elements in a range MUST share the same parent, and the start element
MUST precede the end element in document order.

• The parent of the referencing element MUST be the same as the parent of the referenced
range or generalizable to the parent of the referencing element.

035 (148) Processors SHOULD issue a warning when a @conkeyref reference cannot be resolved and there is
no @conref attribute to use as a fallback. Processors MAY issue a warning when a @conkeyref
cannot be resolved to an element and a specified @conref is used as a fallback.

036 (150) When content is reused between two documents with different domains or constraints, it is possible for
the reused content to include domain extensions that are not defined for the new context, or to include
elements that would be constrained out of the new context. When pulling or pushing content with the
conref mechanism, processors resolving conrefs SHOULD tolerate specializations of valid elements.
Processors MAY generalize elements in the pushed or pulled content fragment as needed for the
resolving context.

037 (150) A conref processor SHOULD NOT permit resolution of a reuse relationship that could be rendered
invalid under the rules of either the reused or reusing content.

038 (151) If the final resolved element (after the complete resolution of any conref chain) has an attribute with the
"-dita-use-conref-target" value, that element MUST be treated as equivalent to having that attribute
unspecified.

039 (156) Processors SHOULD be able to perform filtering and flagging using the following attributes: @props,
@audience, @deliveryTarget, @platform, @product, and @otherprops.

040 (156) The @props attribute can be specialized to create new attributes, and processors SHOULD be able to
perform conditional processing on specializations of @props.

041 (165) In addition to filtering, applications MAY support flagging at the branch level based on the referenced
DITAVAL documents.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 388 of 471

Item Conformance statement

042 (169) It is an error if <ditavalref>-driven branch cloning results in multiple copies of a topic that have the
same resolved name. Processors SHOULD report an error in such cases. Processors MAY recover by
using an alternate naming scheme for the conflicting topics.

In rare cases, a single topic might appear in different branches that set different conditions, yet still
produce the same result. For example, a topic might appear in both the admin and novice copies of a
branch but not contain content that is tailored to either audience; in that case, the filtered copies would
match. A processor MAY consider this form of equivalence when determining if two references to the
same resource should be reported as an error.

043 (169) The full effects of the branch filtering process MUST be calculated by processors before they construct
the effective map and key scope structure. This requirement comes from the fact that the branch
filtering process can result in new or renamed keys, key scopes, or URIs that make up the key space.

044 (179) Processors that perform sorting SHOULD explicitly document how the base sort phrase is determined
for a given element.

045 (179) When a <sort-as> element is specified, processors that sort the containing element MUST construct
the effective sort phrase by prepending the content of the <sort-as> element to the base sort phrase.
This ensures that two items with the same <sort-as> element but different base sort phrases will sort
in the appropriate order.

For example, if a processor uses the content of the <title> element as the base sort phrase, and the
title of a topic is "24 Hour Support Hotline" and the value of the <sort-as> element is "twenty-four
hour", then the effective sort phrase would be "twenty-four hour24 Hour Support Hotline".

046 (180) For attributes within a map, the following processing order MUST occur:

1. The @conref and @keyref attributes are evaluated.
2. The explicit values specified in the document instance are evaluated. For example, a

<topicref> element with the @toc attribute set to "no" will use that value.
3. The default or fixed attribute values are evaluated. For example, the @toc attribute on the

<reltable> element has a default value of "no".
4. The default values that are supplied by a controlled values file are evaluated.
5. The attributes cascade.
6. The processing-supplied default values are applied.
7. After the attributes are resolved within the map, they cascade to referenced maps.

Comment by Kristen J Eberlein on 15 May 2019

The following note is problematic. It contains a normative statement, but we explicitly state
that notes are non-normative.

Discussed at TC call on 28 May 2019.

Disposition: Unassigned

Note The processing-supplied default values do not cascade to other maps. For
example, most processors will supply a default value of toc="yes" when no
@toc attribute is specified. However, a processor-supplied default of toc="yes"
MUST NOT override a value of toc="no" that is set on a referenced map. If the
toc="yes" value is explicitly specified, is given as a default through a DTD,
XSD, RNG, or controlled values file, or cascades from a containing element in the
map, it MUST override a toc="no" setting on the referenced map. See 5.3.3
Map-to-map cascading behaviors (73) for more details.

8. Repeat steps 1 to 4 for each referenced map.
9. The attributes cascade within each referenced map.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 389 of 471

Item Conformance statement

10. The processing-supplied default values are applied within each referenced map.
11. Repeat the process for maps referenced within the referenced maps.

047 (184) While the DITA specification only defines coding requirements for DTD and RELAX NG, conforming
DITA documents MAY use other document-type constraint languages, such as XSD or Schematron.

048 (184) With two exceptions, a document-type shell MUST NOT directly define element or attribute types; it only
includes vocabulary and element-configuration modules (constraint and expansion). The exceptions to
this rule are the following:

• The ditabase document-type shell directly defines the <dita> element.
• RNG-based document-type shells directly specify values for the @specializations attribute.

These values reflect the details of the attribute domains that are integrated by the document-
type shell.

049 (184) Document-type shells that are not provided by OASIS MUST have a unique public identifier, if public
identifiers are used.

050 (184) Document-type shells that are not provided by OASIS MUST NOT indicate OASIS as the owner. The
public identifier or URN for such document-type shells SHOULD reflect the owner or creator of the
document-type shell.

051 (187) Structural modules based on topic MAY define additional topic types that are then allowed to occur as
subordinate topics within the top-level topic.

052 (187) Domain elements intended for use in topics MUST ultimately be specialized from elements that are
defined in the topic module. Domain elements intended for use in maps MUST ultimately be specialized
from elements defined by or used in the map module. Maps share some element types with topics but
no map-specific elements can be used within topics.

053 (189) Every DITA element (except the <dita> element that is used as the root of a ditabase document)
MUST declare a @class attribute.

054 (189) When the @class attribute is declared in an XML grammar, it MUST be declared with a default value.
In order to support generalization round-tripping (generalizing specialized content into a generic form
and then returning it to the specialized form) the default value MUST NOT be fixed. This allows a
generalization process to overwrite the default values that are defined by a general document type with
specialized values taken from the document being generalized.

055 (189) A vocabulary module MUST NOT change the @class attribute for elements that it does not specialize,
but simply reuses by reference from more generic levels.

056 (189) Authors SHOULD NOT modify the @class attribute. The @class attribute and its value is generally not
surfaced in authored DITA topics, although it might be made explicit as part of a processing operation.

057 (190) Each specialization of the @props and @base attributes MUST provide a token for use by the
@specializations attribute.

058 (193) When generalizing for round-tripping, the @class attribute and @specializations attribute
SHOULD retain the original specialized values in the generalized instance document.

059 (194) A generalization processor SHOULD be able to handle cases where it is given:

• Only source modules for generalization (in which case the designated source types are
generalized to topic or map)

• Only target modules for generalization (in which case all descendants of each target are
generalized to that target)

• Both (in which case only the specified descendants of each target are generalized to that
target)

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 390 of 471

Item Conformance statement

060 (195) When renaming elements during round-trip generalization, the generalization processor SHOULD
preserve the values of all attributes. When renaming elements during one-way or migration
generalization, the process SHOULD preserve the values of all attributes except the @class attribute,
which is supplied by the target document type.

061 (195) Specialization-aware processors MUST process both the specialized and generalized forms of an
attribute as equivalent in their values.

062 (195) A single element MUST NOT contain both generalized and specialized values for the same attribute.

063 (196) When possible, generalizing processes SHOULD detect invalid generalization target combinations and
report them as errors.

064 (211) Processors SHOULD render the content of the <shortdesc> element as the initial paragraph of the
topic.

065 (211) When processors generate link previews that are based on the map context, they SHOULD use the
content of the <shortdesc> that is located in the map rather than the <shortdesc> that is located in
the DITA topic. However, when processors render the topic itself, they SHOULD use the content of the
<shortdesc> element that is located in the DITA topic.

066 (213) The processing of an alternative title depends on its roles. Processors SHOULD support the following
tokens for the @title-role attribute:

linking
Specifies that the content of the <titlealt> element contains the title for use in references to
the resources generated from DITA map structures, such as hierarchical parent/child/sibling links
and links generated from relationship tables. In addition, this is the fallback alternative title for
navigation and search roles. Custom title roles meant for use in link generation should also
use this as a fallback.

navigation
Specifies that the content of the <titlealt> element contains the title for use in tables of content
and other navigation aids. In some cases, when processing a <topicref> that has no @href,
this is also used as the title of the generated topic, if applicable. If not present, this role is fulfilled
by the linking role.

search
Specifies that the content of the <titlealt> element contains a title for use in search results for
systems that support content search. If not present, this role is fulfilled by the linking role.

subtitle
Specifies that the content of the <titlealt> element contains a subtitle for the document.

hint
Specifies that the content of the <titlealt> element contains a hint about the referenced
resource. This is intended for the benefit of map authors; it does not have an effect on processing
or output.

-dita-use-conref-target
See 7.3.6 Using the -dita-use-conref-target value (149) for more information.

067 (217) When used in conjunction with <fig> or <table> elements, processors SHOULD consider the content
of <desc> elements to be part of the content flow.

When used in conjunction with <xref> or <link> elements, processors often render the content of
<desc> elements as hover help or other forms of link preview.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 391 of 471

Item Conformance statement

068 (219) By default, processors SHOULD NOT render <draft-comment> elements. Processors SHOULD
provide a mechanism that causes the content of the <draft-comment> element to be rendered in
draft output only.

069 (220) Processors SHOULD treat the presence of more than one <title> element in a <example> element
as an error.

070 (225) Processors SHOULD scale the object when values are provided for the @height and @width
attributes. The following expectations apply:

• If a height value is specified and no width value is specified, processors SHOULD scale the
width by the same factor as the height.

• If a width value is specified and no height value is specified, processors SHOULD scale the
height by the same factor as the width.

• If both a height value and width value are specified, implementations MAY ignore one of the
two values when they are unable to scale to each direction using different factors.

071 (227) Processors SHOULD support the @parse (375) values "text" and "xml".

072 (227) Processors SHOULD detect the encoding of the referenced document based on the rules described for
the @encoding (371) attribute.

073 (229) Processors SHOULD preserve the line breaks and spaces that are present in the content of a <lines>
element.

074 (231) Processors SHOULD render a label for notes. The content of the label depends on the values of the
@type attribute.

075 (232) Processors SHOULD scale the object when values are provided for the @height and @width
attributes. The following expectations apply:

• If a height value is specified and no width value is specified, processors SHOULD scale the
width by the same factor as the height.

• If a width value is specified and no height value is specified, processors SHOULD scale the
height by the same factor as the width.

• If both a height value and width value are specified, implementations MAY ignore one of the
two values when they are unable to scale to each direction using different factors.

076 (232) When an object cannot be rendered in a meaningful way, processors SHOULD present the contents of
the <fallback> element, if it is present.

077 (237) Processors SHOULD preserve the line breaks and spaces that are present in the content of a <pre>
element.

The contents of the <codeblock> element is typically rendered in a monospaced font.

078 (238) Processors SHOULD treat the presence of more than one <title> element in a <section> element
as an error.

079 (243) When an audio resource cannot be rendered in a meaningful way, processors SHOULD present the
contents of the <fallback> element, if it is present.

080 (246) Processors SHOULD scale the video resource when values are provided for the @height and @width
attributes. The following expectations apply:

• If a height value is specified and no width value is specified, processors SHOULD scale the
width by the same factor as the height.

• If a width value is specified and no height value is specified, processors SHOULD scale the
height by the same factor as the width.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 392 of 471

Item Conformance statement

• If both a height value and width value are specified, implementations MAY ignore one of the
two values when they are unable to scale to each direction using different factors.

081 (246) When a video resource cannot be rendered in a meaningful way, processors SHOULD render the
contents of the <fallback> element, if it is present.

082 (249) Processors SHOULD ignore an <index-see> element if its parent <indexterm> element contains
any <indexterm> children.

083 (250) Processors SHOULD ignore an <index-see-also> element if its parent <indexterm> element
contains any <indexterm> children.

084 (292) When @appid-role is set to "deliverable-anchor", and the <resourceid> applies to a deliverable,
processors SHOULD use the @appid value when constructing a URI for the delivered resource.
Effective @appid values for this reflect the application of any prefix or suffix values from 9.7.2.5
dvrKeyscopePrefix (313) and 9.7.2.4 dvrResourceSuffix (311). Actual delivery anchors depend on the
rendered format; for example, the anchor can be the base part of an HTML file name, a PDF anchor
name, or a URI fragment identifier. While anchors values will vary by deliverable, the resulting URI
should reflect the specified anchor as much as possible.

085 (299) By default, processors SHOULD treat a <data> element as unknown metadata. The contents of the
<data> element SHOULD NOT be rendered.

Processors that recognize a particular <data> element MAY make use of it to trigger specialized
rendering.

086 (300) Processors attempt to display <foreign> content unless otherwise instructed. If a processor cannot
render the content, it MAY issue a warning.

087 (308) Processors MAY recover by using an alternate naming scheme for the conflicting copies.

Comment by Kristen J Eberlein on 15 May 2019

Need more information about what situation the processor is recovering from ...

Disposition: Unassigned

Comment by robander
For the above, it would be recovering from a map that instructs it to create two files of the same
name, with different filter conditions applied.
Disposition: Unassigned

088 (318) Processors SHOULD scale the object when values are provided for the @height and @width
attributes. The following expectations apply:

• If a height value is specified and no width value is specified, processors SHOULD scale the
width by the same factor as the height.

• If a width value is specified and no height value is specified, processors SHOULD scale the
height by the same factor as the width.

• If both a height value and width value are specified, implementations MAY ignore one of the
two values when they are unable to scale to each direction using different factors.

089 (329) When a map that contains a <topicgroup> element with a navigation title is used to generate
publication output, processors MUST ignore the navigation title and MAY issue an error message.

090 (330) Processors SHOULD generate a warning if a navigation title is not specified on a <topichead>
element.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 393 of 471

Item Conformance statement

091 (335) Processors SHOULD expect to encounter <sort-as> elements in the above locations. Processors
that sort SHOULD use the following precedence rules:

• A <sort-as> element that is specified in a title takes precedence over a <sort-as> element
that is specified as a child of the topic prolog.

• Except for instances in the topic prolog, processors only apply <sort-as> elements that are
either a direct child of the element to be sorted or a direct child of the title- or label-defining
element of the element to be sorted.

• When an element contains multiple, direct-child, <sort-as> elements, the first direct-child
<sort-as> element in document order takes precedence.

• It is an error if there is more than one <sort-as> child for a given <indexterm> element.
• Sort phrases are determined after filtering and content reference resolution occur.

092 (336) When a <sort-as> element is specified, processors that sort the containing element MUST construct
the effective sort phrase by prepending the content of the <sort-as> element to the base sort phrase.
This ensures that two items with the same <sort-as> element but different base sort phrases will sort
in the appropriate order.

For example, if a processor uses the content of the <title> element as the base sort phrase, and the
title of a topic is "24 Hour Support Hotline" and the value of the <sort-as> element is "twenty-four
hour", then the effective sort phrase would be "twenty-four hour24 Hour Support Hotline".

093 (337) Processors MUST strip this element from output by default. The content of <required-cleanup> is
not considered to be publishable data.

094 (340) For the @color and @backcolor attributes on <prop> and <revprop>, processors SHOULD
support at least the following values:

• The color names listed under the heading "<color>" in the XSL version 1.1 specification
• The associated hex code

For the @style attribute on <rev> and <revprop>, processors SHOULD support the following
tokens:

• bold
• double-underline
• italics
• overline
• underline

In addition, processors MAY support proprietary tokens for the @style attribute. Such tokens SHOULD
have a processor-specific prefix to identify them as proprietary. If a processor encounters an
unsupported style token, it MAY issue a warning, and it MAY render content that is flagged with such a
style token by using some default formatting.

095 (340) The following markup in a DITAVAL document is an error condition:

• More than one <prop> element with no @att attribute
• More than one <prop> element with the same @att attribute and no value
• More than one <prop> element with the same @att attribute and same @value

Processors MAY provide an error or warning message for these error conditions.

096 (342) For the @color and @backcolor attributes on <prop> and <revprop>, processors SHOULD
support at least the following values:

• The color names listed under the heading "<color>" in the XSL version 1.1 specification
• The associated hex code

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 394 of 471

http://www.w3.org/TR/2006/REC-xsl11-20061205/#datatype
http://www.w3.org/TR/2006/REC-xsl11-20061205/#datatype

Item Conformance statement

For the @style attribute on <rev> and <revprop>, processors SHOULD support the following
tokens:

• bold
• double-underline
• italics
• overline
• underline

In addition, processors MAY support proprietary tokens for the @style attribute. Such tokens SHOULD
have a processor-specific prefix to identify them as proprietary. If a processor encounters an
unsupported style token, it MAY issue a warning, and it MAY render content that is flagged with such a
style token by using some default formatting.

097 (343) It is an error to include more than one <revprop> element with the same @val attribute. Recovery
from this error is implementation dependent. In such cases processors MAY provide an error or warning
message.

098 (381) The DITA specification defines several core features, as summarized in the following list. Any
implementation that supports a feature MUST conform to all rules laid out in the section that describes
the feature.

099 (382) Conforming DITA implementations SHOULD include a conformance statement that gives the version of
the DITA specification that is supported, indicate if all features from the list above are supported, and
indicate that all normative rendering rules are supported.

100 (382) If only a subset of features is supported, implementations SHOULD indicate which features are (or are
not) supported. If an implementation supports rendering DITA elements but does not render all elements
as described above, that application SHOULD indicate which elements are (or are not) supported.

101 (382) Not all DITA features are relevant for all implementations. For example, a DITA editor that does not
render content references in context does not need to conform to rules regarding the @conref attribute.
However, any application that renders content references MUST conform to the rules described in7.3
Content reference (conref) (139).

102 (382) Implementations that support only a subset of DITA features are considered conforming as long as all
supported features follow the requirements that are given in the DITA specification. An implementation
that does not support a particular feature MUST be prepared to interoperate with other implementations
that do support the feature.

103 (382) A DITA document that refers to document type shells distributed by OASIS MUST be valid according to
both the grammar files and any assertions provided in the language reference.

104 (382) If a DITA document refers to a custom document type shell, that shell MUST also conform to the rules
laid out in X.X.X.X Rules for document-type shells.

105 (382) If a DITA document's custom document type shell includes constraints, that shell MUST also conform to
the rules laid out in X.X.X.X Constraint rules

106 (382) If a DITA document uses specialized elements or attributes, those elements or attributes MUST also
conform to the rules laid out in X.X.X Specialization rules for element types, X.X.X Specialization rules
for attributes, and X.X.X Class attribute rules and syntax.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 395 of 471

http://example.com
http://example.com
http://example.com
http://example.com
http://example.com
http://example.com

C Coding practices for DITA grammar files
This section contains information about creating modular DTD- or RELAX NG-based grammar files. It
explains how document-type shells, specialization modules, and element-configuration modules
(constraint and expansion) are organized.

C.1 File naming conventions
The OASIS DITA Technical Committee uses certain conventions for the names of XML grammar files. We
suggest using these conventions as a way to facilitate the interchange of grammar files.

Globally unique identifiers

Vocabulary modules that are intended for use outside of a narrowly-restricted context should have
one or more associated, globally-unique names by which the modules can be referenced without
regard to their local storage location. The globally-unique names can be public identifiers, URNs, or
absolute URLs.

Document-type shells

Document-type shells should be given a name that distinguishes their name, owner, or purpose, for
example, acme-concept.dtd. The document-type shells that are provided by the DITA Technical
Committee typically use the root element of the primary specialization as the basis for the file name.
If necessary, a qualifier such as "base" is prepended to the name of the root element.

Module names

For structural modules, the module name should be the element type name of the top-level topic or
map type that is defined by the module, such as "topic" or "map".

For element- or attribute-domain modules, the module name should be a name that reflects the
subject domain to which the domain applies, such as "highlight" or "software". Domain module
names should be sufficiently unique that they are unlikely to conflict with any other domains.

In addition, each element- or attribute-domain module has a short name that is used to construct
entity names that are used in associated declarations. Modules can also have abbreviated names
that further shorten the short name, for example "hi-d" for the "highlight" domain, where "highlight" is
the short name and "hi-d" is the abbreviated name.

C.2 DTD coding requirements
This section explains how to implement DTD-based document-type shells, specializations, and element-
configuration modules (constraint and expansion).

C.2.1 DTD: Use of entities
DITA-based DTDs use entities to implement specialization and element configuration. Therefore, an
understanding of entities is critical when working with DTD-based document-type shells, vocabulary
modules, or element-configuration modules (constraint and expansion).

Entities can be defined multiple times within a single document type, but only the first definition is
effective. How entities work shapes DTD coding practices. The following list describes a few of the more
important entities that are used in DITA DTDs:

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 396 of 471

Elements defined as entities

Every element in a DITA DTD is defined as an entity. When elements are added to a content model,
they are added using the entity. This enables extension with domain specializations.

For example, the entity %ph; usually just means the <ph> element, but it can be defined in a
document-type shell to mean "<ph> plus the elements from the highlighting domain". Because the
document-type shell places that entity definition before the usual definition, every element that
includes %ph; in its content model now includes <ph> plus every element in the highlighting domain
that is specialized from <ph>.

Content models defined as entities

Every element in a DITA DTD defines its content model using an entity. This enables element
configuration.

For example, the content model for the <p> element is set to %ph.content;, and the
%ph.content; entity defines the actual content model. A constraint module then can redefine the
%ph.content; entity to remove selected elements from the content model, or an expansion module
can redefine the %ph.content; entity to add elements to the content model.

Attribute sets defined as entities

Every element name in a DITA DTD defines its attributes using a parameter entity. This enables
element configuration.

For example, the attribute list for the <ph> element is set to %ph.attributes;, and the
%ph.attributes; entity defines the actual attribute list. A constraint module then can redefine the
entity to remove attributes from the attribute list, or an expansion module can redefine the entity to
add attributes to the attribute list.

Note When constructing an element-configuration module or document-type shell, new entities are
usually viewed as "redefinitions" because they redefine entities that already exist. However,
these new definitions only work because they are added to a document-type shell before the
existing definitions. Most topics about DITA DTDs, including others in this specification,
describe these overrides as redefinitions to ease understanding.

C.2.2 DTD: Coding requirements for document-type shells
A DTD-based document-type shell is organized into sections. Each section contains entity declarations
that follow specific coding rules.

The DTD-based approach to configuration, specialization, and element configuration (constraint and
expansion) relies heavily upon parameter entities. Several of the parameter entities that are declared in
document-type shells contain references to other parameter entities. Because parameter entities must be
declared before they are used, the order of the sections in a DTD-based document-type shell is
significant.

A DTD-based document-type shell contains the following sections:

1. Topic [or map] entity declarations (398)
2. Domain constraint integration (398)
3. Domain entity declarations (398)
4. Domain attributes declarations (399)
5. Domain extensions (399)
6. Domain attribute extensions (399)
7. Topic nesting override (400)
8. Specializations attribute override (400)

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 397 of 471

9. Element-type configuration integration (400)
10.Topic [or map] element integration (400)
11.Domain element integration (401)

Each of the sections in a DTD-based document-type shell follows a pattern. These patterns help ensure
that the shell follows XML parsing rules for DTDs. They also establish a modular design that simplifies
creation of new document-type shells.

Topic [or map] entity declarations

This section declares and references an external parameter entity for each of the following items:

• The entity declaration module (.ent file) for the top-level topic or map type that the
document-type shell configures

• The entity declaration modules for any additional structural modules that are used by the
document-type shell

The parameter entity is named typeName-dec.

In the following example, the entity declaration module for the <concept> specialization is
integrated into a document-type shell:

<!-- === -->
<!-- TOPIC ENTITY DECLARATIONS -->
<!-- === -->

<!ENTITY % concept-dec
 PUBLIC "-//OASIS//ENTITIES DITA 2.0 Concept//EN"
 "concept.ent"
>%concept-dec;

Domain constraint integration

This section declares and references an external parameter entity for each domain-constraint module
that is integrated into the document-type shell.

The parameter entity is named descriptorDomainName-c-dec.

In the following example, the entity file for a constraint module that reduces the highlighting domain
to a subset is integrated in a document-type shell:

<!-- === -->
<!-- DOMAIN CONSTRAINT INTEGRATION -->
<!-- === -->

<!ENTITY % HighlightingDomain-c-dec
 PUBLIC "-//ACME//ENTITIES DITA Highlighting Domain Constraint//EN"
 "acme-HighlightingDomainConstraint.mod"
>%basic-HighlightingDomain-c-dec;

Domain entity declarations

This section declares and references an external parameter entity for each element-domain module
that is integrated into the document-type shell.

The parameter entity is named shortDomainName-dec.

In the following example, the entity file for the highlighting domain is included in a document-type
shell:

<!-- === -->
<!-- DOMAIN ENTITY DECLARATIONS -->
<!-- === -->

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 398 of 471

<!ENTITY % hi-d-dec PUBLIC
 "-//OASIS//ENTITIES DITA 2.0 Highlight Domain//EN"
 "highlightDomain.ent"
>%hi-d-dec;

Domain attributes declarations

This section declares and references an external parameter entity for each attribute domain that is
integrated into the document-type shell.

The parameter entity is named domainNameAtt-dec.

In the following example, the entity file for the @deliveryTarget attribute domain is included in a
document-type shell:

<!-- === -->
<!-- DOMAIN ATTRIBUTES DECLARATIONS -->
<!-- === -->

<!ENTITY % deliveryTargetAtt-d-dec
 PUBLIC "-//OASIS//ENTITIES DITA 2.0 Delivery Target Attribute Domain//EN"
 "deliveryTargetAttDomain.ent"
>%deliveryTargetAtt-d-dec;

Domain extensions

This section declares and references a parameter entity for each element that is extended by one or
more domain modules. These entities are used by the element-domain modules that are declared
later in the document-type shell to redefine the content models. Redefining the content models adds
domain specializations wherever the base element is allowed.

In the following example, the entity for the <pre> element is redefined to add specializations from
the programming, software, and user interface domains:

<!-- === -->
<!-- DOMAIN EXTENSIONS -->
<!-- === -->

<!ENTITY % pre
 "pre |
 %pr-d-pre; |
 %sw-d-pre; |
 %ui-d-pre;">

Domain attribute extensions

This section redefines the parameter entity for each attribute domain that is integrated globally into
the document-type shell. The redefinition adds an extension to the parameter entity for the relevant
attribute.

In the following example, the parameter entities for the @base and @props attributes are redefined
to include the @newfrombase, @othernewfrombase, @new, and @othernew attributes:

<!-- === -->
<!-- DOMAIN ATTRIBUTE EXTENSIONS -->
<!-- === -->

<!ENTITY % base-attribute-extensions
 "%newfrombaseAtt-d-attribute;
 %othernewfrombaseAtt-d-attribute;">

<!ENTITY % props-attribute-extensions
 "%newAtt-d-attribute;
 %othernewAtt-d-attribute;">

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 399 of 471

Topic nesting override

This section redefines the entity that controls topic nesting for each topic type that is integrated into
the document-type shell.

The parameter entity is named topictype-info-types.

The definition usually is an "OR" list of the topic types that can be nested in the parent topic type.
Use the literal root-element name, not the corresponding parameter entity. Topic nesting can be
disallowed completely by specifying the <no-topic-nesting> element.

In the following example, the parameter entity specifies that <concept> can nest any number of
<concept> or <myTopicType> topics, in any order:

<!-- === -->
<!-- TOPIC NESTING OVERRIDE -->
<!-- === -->

<!ENTITY % concept-info-types "concept | myTopicType">

Specializations attribute override

This section redefines the included-domains entity to include the text entity for each attribute
domain that is included in the document-type shell. The redefinition sets the effective value of the
@specializations attribute for the top-level document type that is configured by the document-
type shell.

In the following example, parameter entities are included for the DITA conditional-processing
attributes:

<!-- === -->
<!-- SPECIALIZATIONS ATTRIBUTE OVERRIDE -->
<!-- === -->

<!ENTITY included-domains
 "&audienceAtt-d-att;
 &deliveryTargetAtt-d-att;
 &otherpropsAtt-d-att;
 &platformAtt-d-att;
 &productAtt-d-att;"
>

Element-type configuration integration

This section declares and references the parameter entity for each element-configuration module
(constraint and expansion) that is integrated into the document-type shell.

The parameter entity is named descriptionElement-c-def.

In the following example, the module that constrains the content model for the <taskbody> element
is integrated into the document-type shell for strict task:

<!ENTITY % strictTaskbody-c-def
 PUBLIC "-//OASIS//ELEMENTS DITA 2.0 Strict Taskbody Constraint//EN"
 "strictTaskbodyConstraint.mod"
>%strictTaskbody-c-def;

Topic [or map] element integration

This section declares and references an external parameter entity for the element declaration module
(.mod file) for each structural module that is integrated into the document-type shell.

The parameter entity is named structuralType-type.

The structural modules are included in ancestry order, so that the parameter entities that are used in
an ancestor module are available for use in specializations. When a structural module depends on

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 400 of 471

elements from a vocabulary module that is not part of its ancestry, the module upon which the
structural module has a dependency (and any ancestor modules not already included) need to be
included before the module with a dependency.

In the following example, the structural modules that are required by the troubleshooting topic are
integrated into the document-type shell:

<!-- === -->
<!-- TOPIC ELEMENT INTEGRATION -->
<!-- === -->

<!ENTITY % topic-type
 PUBLIC "-//OASIS//ELEMENTS DITA 2.0 Topic//EN"
 "../../base/dtd/topic.mod"
>%topic-type;

<!ENTITY % task-type
 PUBLIC "-//OASIS//ELEMENTS DITA 2.0 Task//EN"
 "task.mod"
>%task-type;

<!ENTITY % troubleshooting-type
 PUBLIC "-//OASIS//ELEMENTS DITA 2.0 Troubleshooting//EN"
 "troubleshooting.mod"
>%troubleshooting-type;

Domain element integration

This section declares and references an external parameter entity for each element domain that is
integrated into the document-type shell.

The parameter entity is named domainName-def.

In the following example, the element-definition file for the highlighting domain is integrated into the
document-type shell:

<!-- === -->
<!-- DOMAIN ELEMENT INTEGRATION -->
<!-- === -->

<!ENTITY % hi-d-def PUBLIC
 "-//OASIS//ELEMENTS DITA 2.0 Highlight Domain//EN"
 "highlightDomain.mod"
>%hi-d-def;

If a structural module depends on a domain, the domain module needs to be included before the
structural module. This erases the boundary between the final two sections of the DTD-based
document-type shell, but it is necessary to ensure that modules are embedded after their
dependencies. Technically, the only solid requirement is that both domain and structural modules be
declared after all other modules that they specialize from or depend on.

C.2.3 DTD: Coding requirements for structural and element-domain
modules
This topic covers general coding requirements for defining element types in both structural and element-
domain vocabulary modules.

Module files
A vocabulary module that defines a structural or element-domain specialization is composed of two files:

Definition module file
This (.mod) file declares the element names, content models, and attribute lists for the element types
that are defined in the vocabulary module.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 401 of 471

Entity declaration file
This (.ent) file declares the general and parameter entities that are used to integrate the vocabulary
module into a document-type shell.

Element definitions
A structural or element-domain vocabulary module contains a declaration for each element type that is
named by the module. While the XML standard allows content models to refer to undeclared element
types, the DITA standard does not permit this. All element types or attribute lists that are named within a
vocabulary module are declared in one of the following objects:

• The vocabulary module
• A base module of which the vocabulary module is a direct or indirect specialization
• (For structural modules) A required domain module

The following components make up a single element definition in a DITA DTD-based vocabulary module.

Element name entities

For each element type, there is a parameter entity with a name that matches the element-type name.
The value is the element-type name.

For example:

<!ENTITY % topichead "topichead">

The parameter entity provides a layer of abstraction when setting up content models. It can be
redefined in a document-type shell in order to create domain extensions or implement element
configuration (constraint and expansion).

Element name entities for a vocabulary module typically are grouped together at the top of the
vocabulary module. They can occur in any order.

Content-model parameter entity

For each element type, there is a parameter entity that defines the content model. The name of the
parameter entity is tagname.content, and the value is the content model definition.

For example:

<!ENTITY % topichead.content
 "((%topicmeta;)?,
 (%data.elements.incl; |
 %navref; |
 %topicref;)*)
">

Attribute-list parameter entity

For each element type, there is a parameter entity that declares the attributes that are available on
the element. The name of the parameter entity is tagname.attributes, and the value is a list of
the attributes that are used by the element type (except for @class).

For example:

<!ENTITY % topichead.attributes
 "keys CDATA #IMPLIED
 %topicref-atts;
 %univ-atts;"
>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 402 of 471

Consistent use and naming of the tagname.content parameter entity enables the use of element-
configuration modules (constraint and expansion) to redefine the content model.

Element declaration

For each element type, there is an element declaration that consists of a reference to the content-
model parameter entity.

For example:

<!ELEMENT topichead %topichead.content;>

Attribute list declaration

For each element type, there is an attribute-list declaration that consists of a reference to the
attribute-list parameter entity.

For example:

<!ATTLIST topichead %topichead.attributes;>

Specialization attribute declarations

A vocabulary module defines a @class attribute for every element that is declared in the module.
The value of the attribute is constructed according to the rules in 8.3.6 The class attribute rules and
syntax (188).

For example, the ATTLIST definition for the <topichead> element (a specialization of the
<topicref> element in the base map type) includes the definition of the @class attribute, as
follows:

<!ATTLIST topichead class CDATA "+ map/topicref mapgroup-d/topichead ">

Definition of the <topichead> element
The following code sample shows how the <topichead> element is defined in mapGroup.mod. Ellipses
indicate where the code sample has been snipped for brevity.

<!-- === -->
<!-- ELEMENT NAME ENTITIES -->
<!-- === -->

<!ENTITY % topichead "topichead" >

...

<!-- === -->
<!-- ELEMENT DECLARATIONS -->
<!-- === -->

<!-- LONG NAME: Topichead -->
<!ENTITY % topichead.content
 "((%topicmeta;)?,
 (%data.elements.incl; |
 %navref; |
 %topicref;)*)"
>
<!ENTITY % topichead.attributes
 "keys
 CDATA
 #IMPLIED
 %topicref-atts;
 %univ-atts;"
>
<!ELEMENT topichead %topichead.content;>
<!ATTLIST topichead %topichead.attributes;>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 403 of 471

...

<!-- === -->
<!-- SPECIALIZATION ATTRIBUTE DECLARATIONS -->
<!-- === -->

...

<!ATTLIST topichead class CDATA "+ map/topicref mapgroup-d/topichead ">

<!-- ================== End of DITA Map Group Domain ==================== -->

C.2.4 DTD: Coding requirements for structural modules
This topic covers general coding requirements for DTD-based structural modules.

Required topic and map element attributes
The topic or map element type sets the @ditaarch:DITAArchVersion attribute to the version of DITA
in use, typically by referencing the arch-atts parameter entity. It also sets the @specializations
attribute to the included-domains entity.

The @DITAArchVersion and @specializations attributes give processors a reliable way to check
the architecture version and look up the list of attribute domains that are available in the document type.

The following example shows how the @DITAArchVersion and @specializations attributes are
defined for the <concept> element in DITA 2.0. Ellipses indicate where the code is snipped for brevity:

<!-- === -->
<!-- ELEMENT DECLARATIONS -->
<!-- === -->

...

<!-- LONG NAME: Concept -->

...

<!ATTLIST concept
 %concept.attributes;
 %arch-atts;
 specializations CDATA "&included-domains;">

Controlling nesting in topic types
A structural module that defines a new topic type typically uses a parameter entity to define a default for
what topic types are permitted to nest. When this is done consistently, a shell that includes multiple
structural modules can set common nesting rules for all topic types by setting %info-types; entity.

The following rules apply when using parameter entities to control nesting.

Parameter entity name

The name of the parameter entity is the topic element name plus the -info-types suffix.

For example, the name of the parameter entity for the concept topic is concept-info-types.

Parameter entity value

To set up default topic nesting rules, set the entity to the desired topic elements. The default topic
nesting is used when a document-type shell does not set up different rules.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 404 of 471

For example, the following parameter entity sets up default nesting so that <concept> will nest only
other <concept> topics:

<!-- === -->
<!-- ELEMENT DECLARATIONS -->
<!-- === -->

<!ENTITY % concept-info-types
 "%info-types;"
>

As an additional example, the following parameter entity sets up a default that will not allow any
nesting:

<!ENTITY % glossentry-info-types "no-topic-nesting">

Content model of the root element

The last position in the content model defined for the root element of a topic type should be the
topictype-info-types parameter entity.

A document-type shell then can control how topics are allowed to nest for this specific topic type by
redefining the topictype-info-types entity for each topic type.

For example, with the following content model defined for <concept>, a document-type shell that
uses the concept specialization can control which topics are nested in <concept> by redefining the
concept-info-types parameter entity:

<!ENTITY % concept.content
 "((%title;),
 (%abstract; | %shortdesc;)?,
 (%prolog;)?,
 (%conbody;)?,
 (%related-links;)?,
 (%concept-info-types;)*)"
>

In certain cases, you do not need to use an info-types parameter entity to control topic nesting:

• If you want a specialized topic type to disallow nested topics, regardless of context, it can be
defined without any entity or any nested topics.

• If you want a specialized topic type to only allow specific nesting patterns, such as allowing only
other topic types that are defined in the same module, it can nest those topics directly in the same
way that other nested elements are defined.

C.2.5 DTD: Coding requirements for element-domain modules
The vocabulary modules that define element domains have an additional coding requirement. The entity
declaration file must include a parameter entity for each element that the domain extends.

Parameter entity name

The name of the parameter entity is the abbreviation for the domain, followed by a hyphen ("-") and
the name of the element that is extended.

For example, the name of the parameter entity for the highlighting domain that extends the <ph>
element is hi-d-ph.

Parameter entity value

The value of the parameter entity is a list of the specialized elements that can occur in the same
locations as the extended element. Each element is separated by the vertical line (|) symbol.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 405 of 471

For example, the value of the %hi-d-ph; parameter entity is "b | u | i | line-through |
overline | tt | sup | sub".

Example
The following code sample shows the parameter entity for the highlight domain, as declared in
highlightDomain.ent:

<!-- === -->
<!-- ELEMENT EXTENSION ENTITY DECLARATIONS -->
<!-- === -->

<!ENTITY % hi-d-ph "b | i | line-through | overline | sup | sub | tt | u">

<!-- ================ End DITA Highlight Domain ================== -->

C.2.6 DTD: Coding requirements for attribute-domain modules
The vocabulary modules that define attribute domains have additional coding requirements. The module
must include a parameter entity for the new attribute, which can be referenced in document-type shells,
as well as a general entity that specifies the contribution to the @specializations attribute for the
attribute domain.

The name of an attribute domain is the name of the attribute plus "Att". For example, for the attribute
named @deliveryTarget, the attribute-domain name is "deliveryTargetAtt". The attribute-domain name
is used to construct entity names for the domain.

Parameter entity name and value
The name of the parameter entity is the attribute-domain name, followed by the literal -d-
attribute. The value of the parameter entity is a DTD declaration for the attribute.

General entity name and value
The general entity name is the attribute-domain name, followed by the literal -d-Att. The value of
the text entity is the @specializations attribute contribution for the module. See 8.3.7 The
specializations attribute rules and syntax (190) for details on how to construct this value.

Example
The @deliveryTarget attribute can be defined in a vocabulary module using the following two entities.

<!ENTITY % deliveryTargetAtt-d-attribute
 "deliveryTarget CDATA #IMPLIED"
>

<!ENTITY deliveryTargetAtt-d-att "@props/deliveryTarget" >

C.2.7 DTD: Coding requirements for element-configuration modules
Element-configuration modules (constraint and expansion) have specific coding requirements.

The tagname.attributes parameter entity
When the attribute list for an element is constrained or expanded, there is a declaration of the
tagname.attributes parameter entity that defines the modified attributes.

The following list provides examples for both constraint and expansion modules:

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 406 of 471

Constraint module
The following parameter entity defines a constrained attributes list for the <note> element that
removes most of the values defined for @type. It also removes @othertype:

<!ENTITY % note.attributes
 "type (attention | caution | note) #IMPLIED
 %univ-atts;">

The following parameter entity restricts the highlighting domain to and <i>:

<!ENTITY % HighlightingDomain-c-ph "b | i" >

Expansion module
The following parameter entity defines a new attribute intended for use with various table elements:

<!ENTITY % cellPurposeAtt-d-attribute-expansion
 "cell-purpose (sale | out-of-stock | new | last-chance | inherit | none) #IMPLIED"
>

For expansion modules, note the following considerations. The tagname.attributes parameter entity
can be defined in an attribute-specialization module, or it can be defined directly in the expansion module.

The tagname.content parameter entity
When the content model for an element is constrained or expanded, there is a declaration of the
tagname.content parameter entity that defines the modified content model.

The following list provides examples for both constraint and expansion modules:

Constraint module
The following parameter entity defines a more restricted content model for <topic>, in which the
<shortdesc> element is required.

<!ENTITY % topic.content
 "((%title;),
 (%shortdesc;),
 (%prolog;)?,
 (%body;)?,
 (%topic-info-types;)*)"
>

Note that replacing a base element with domain extensions is a form of constraint that can be
accomplished directly in the document-type shell. No constraint module is required.

In the following example, the <pre> base type is removed from the entity declaration, effectively
allowing specializations of <pre> but not <pre> itself.

<!ENTITY % pre
 "%pr-d-pre; |
 %sw-d-pre; |
 %ui-d-pre;">

Expansion module
The redefinition of the content model references the parameter entity that was defined in the
element-specialization module.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 407 of 471

The following code sample shows the entity declaration file for an element-specialization module that
defines a <section-shortdesc> element, which is intended to be added to the content model of
<section>:

<!ENTITY % section-shortdesc "section-shortdesc">

When the content model for <section> is redefined in the expansion module, it references the
parameter entity defined in the entities file for the element specialization:

<!ENTITY % section.content
 "(#PCDATA |
 %dl; |
 %div; |
 %fig; |
 %image; |
 %note; |
 %ol; |
 %p; |
 %simpletable; |
 %ul; |
 %title; |
 %draft-comment;|
 %sectionShortdesc;)*"
>

Note that this expansion module also constrains the content model of <section> to only include
certain block elements.

Related concepts
Examples: Constraints implemented using DTDs (420)
This section of the specification contains examples of constraints implemented using DTD.

Examples: Expansion implemented using DTDs (430)
This section of the specification contains examples of extension modules that are implemented using
DTDs.

C.3 RELAX NG coding requirements
This section explains how to implement RNG-based document-type shells, specializations, and element-
configuration modules (constraints and expansions).

If you plan to generate DTD- or XSD-based modules from RELAX NG modules, avoid RELAX NG
features that cannot be translated into DTD or XSD constructs. Such features include lexical patterns for
attributes and elements, interleave patterns, and context-specific patterns for content models or attribute
lists.

When RELAX NG is used directly for DITA document validation, the document-type shells for those
documents can integrate constraint modules that use the full power of RELAX NG to enforce constraints
that cannot be enforced by DTDs or XSDs.

C.3.1 RELAX NG: Overview of coding requirements
This topic contains general information about the self-integrating aspect of domain specialization
modules, RELAX NG grammar files, and the two RNG syntaxes

Self-integration of RELAX NG domain modules
Domain modules coded in RELAX NG are self-integrating; they automatically add to the content models
and attribute lists that they extend. This aspect of RELAX NG results in the following coding practices:

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 408 of 471

• Each domain module consists of a single file, unlike the two required for DTDs.
• The domain modules directly extend elements, unlike DTDs, which rely on an extra file and

extensions within the document-type shell.
• Element-configuration modules (constraint and expansion) directly include the modules that they

extend, which means that just by referencing an element-configuration module, the document-
type shell gets everything it needs to redefine a vocabulary module.

General RELAX NG information
RELAX NG grammars for DITA document-type shells, vocabulary modules, and element-configuration
modules (constraint and expansion) can do the following:

• Use the <a:documentation> element anywhere that foreign elements are allowed by RELAX
NG. The <a:documentation> element refers to the <documentation> element type from the
http://relaxng.org/ns/compatibility/annotations/1.0 as defined by the DTD
compatibility specification. The prefix "a" is used by convention.

• Use <div> to group pattern declarations.
• Include embedded Schematron rules or any other foreign vocabulary. Processors can ignore any

foreign vocabularies within DITA grammars that are not in the http://relaxng.org/ns/
compatibility/annotations/1.0 or http://dita.oasis-open.org/architecture/
2005/ namespaces.

Syntaxes for RELAX NG grammars
The RELAX NG specification defines two syntaxes for RELAX NG grammars: the XML syntax and the
compact syntax. The two syntaxes are functionally equivalent, and either syntax can be reliably converted
into the other by using, for example, the open-source Trang tool.

The DITA coding requirements are defined for the RELAX NG XML syntax. Document-type shells,
vocabulary modules, and element-configuration modules (constraints and expansion) that use the RELAX
NG compact syntax can use the same organizational structures as those defined for the RELAX NG XML
syntax.

DITA practitioners can author DITA modules using one RELAX NG syntax, and then use tools to generate
modules in the other syntax. The resulting RELAX NG modules are equivalent if there is a one-to-one file
correspondence.

C.3.2 RELAX NG: Coding requirements for document-type shells
A RNG-based document-type shell is organized into sections; each section follows a pattern. These
patterns help ensure that the shell follows XML parsing rules for RELAX NG; they also establish a
modular design that simplifies creation of new document-type shells.

An RNG-based document-type shell contains the following sections:

1. Root element declaration (410)
2. specializations attribute (410)
3. Element-type configuration integration (410)
4. Module inclusions (410)
5. ID-defining element overrides (411)

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 409 of 471

Root element declaration

Document-type shells use the RELAX NG start declaration to specify the root element of the
document type. The <start> element defines the root element, using a reference to a
tagname.element pattern.

For example:

<div>
 <a:documentation>ROOT ELEMENT DECLARATION</a:documentation>
 <start combine="choice">
 <ref name="topic.element"/>
 </start>
</div>

@specializations attribute

This section lists the tokens that attribute-domain and element-configuration modules contribute to
the @specializations attribute.

For example:

<div>
 <a:documentation>SPECIALIZATIONS ATTRIBUTE</a:documentation>
 <define name="specializations-att">
 <optional>
 <attribute name="specializations"
 a:defaultValue="@props/audience
 @props/deliveryTarget
 @props/otherprops
 @props/platform
 @props/product"
 />
 </optional>
 </define>
</div>

Element-type configuration integration

This section of the document-type shell contains includes for element-type configuration modules
(constraint and expansion). Because an element-configuration module imports the module that it
overrides, any module that is configured in this section (including the base topic or map modules) is
left out of the following "Module inclusion" section.

The following code sample shows the section of an RNG-based document-type shell that redefines
the <taskbody> element to create the strict task topic.

<div>
<a:documentation>ELEMENT-TYPE CONFIGURATION INTEGRATION</a:documentation>
 <include href="strictTaskbodyConstraintMod.rng"/>
</div>

Module inclusions

This section of the RNG-based document-type shell includes all unconstrained domain or structural
modules.

For example:

 <div>
 <a:documentation>MODULE INCLUSIONS</a:documentation>
 <include href="topicMod.rng">
 <define name="topic-info-types">
 <ref name="topic.element"/>
 </define>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 410 of 471

 </include>
 <include href="audienceAttDomain.rng" dita:since="2.0"/>
 <include href="deliveryTargetAttDomain.rng"/>
 <include href="otherpropsAttDomain.rng" dita:since="2.0"/>
 <include href="platformAttDomain.rng" dita:since="2.0"/>
 <include href="productAttDomain.rng" dita:since="2.0"/>
 <include href="alternativeTitlesDomain.rng" dita:since="2.0"/>
 <include href="emphasisDomain.rng" dita:since="2.0"/>
 <include href="hazardstatementDomain.rng"/>
 <include href="highlightDomain.rng"/>
 <include href="utilitiesDomain.rng"/>
 </div>

ID-defining element overrides

This section declares any element in the document type that uses an @id attribute with an XML data
type of "ID". This declaration is required in order to prevent RELAX NG parsers from issuing errors.

If the document-type shell includes domains for foreign vocabularies such as SVG or MathML, this
section also includes exclusions for the namespaces used by those domains.

For example, the following code sample is from an RNG-based document-type shell for a task topic.
It declares that both the <topic> and <task> elements have an @id attribute with an XML data
type of ID. These elements and any elements in the SVG or MathML namespaces are excluded from
the "any" pattern by being placed within the <except> element:

 <div>
 <a:documentation> ID-DEFINING-ELEMENT OVERRIDES </a:documentation>
 <define name="any">
 <zeroOrMore>
 <choice>
 <ref name="idElements"/>
 <element>
 <anyName>
 <except>
 <name>topic</name>
 <name>task</name>
 <nsName ns="http://www.w3.org/2000/svg"/>
 <nsName ns="http://www.w3.org/1998/Math/MathML"/>
 </except>
 </anyName>
 <zeroOrMore>
 <attribute>
 <anyName/>
 </attribute>
 </zeroOrMore>
 <ref name="any"/>
 </element>
 <text/>
 </choice>
 </zeroOrMore>
 </define>
 </div>

C.3.3 RELAX NG: Coding requirements for structural and element-domain
modules
This topic covers general coding requirements for defining element types in both structural and element-
domain vocabulary modules.

Module files
Each RELAX NG vocabulary module consists of a single module file.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 411 of 471

Element definitions
A structural or element-domain vocabulary module contains a declaration for each element type that is
named in the module. While the XML standard allows content models to refer to undeclared element
types, the DITA standard does not permit it. All element types or attribute lists that are named in a
vocabulary module are declared in one of the following objects:

• The vocabulary module
• A base module of which the vocabulary module is a direct or indirect specialization
• (If the vocabulary module is a structural module) A required domain or structural module

The element type patterns are organized into the following sections:

Element type name patterns

For each element type that is declared in the vocabulary module, there is a pattern whose name is
the element type name and whose content is a reference to the tagname.element pattern for the
element type.

The following example shows the pattern for the element:

<div>
 <a:documentation>ELEMENT TYPE NAME PATTERNS</a:documentation>
 <!-- ... -->
 <define name="b">
 <ref name="b.element"/>
 </define>
 <!-- ... -->
</div>

The element-type name pattern provides a layer of abstraction that facilitates redefinition. The
element-type name patterns are referenced from content model and domain extension patterns.
Specialization modules can re-declare the patterns to include specializations of the type, allowing the
specialized types in all contexts where the base type is allowed.

The declarations can occur in any order.

Common content-model patterns
Structural and element-domain modules can include a section that defines the patterns that
contribute to the content models of the element types that are defined in the module.

Common attribute sets
Structural and element-domain modules can include a section that defines patterns for attribute sets
that are common to one or more of the element types that are defined in the module.

Element type declarations

For each element type that is declared in the vocabulary module, the following set of patterns are
used to define the content model and attributes for the element type. Each set of patterns typically is
grouped within a <div> element.

tagname.content
Defines the complete content model for the element tagname. The content model pattern can be
overridden in element-configuration modules (constraint and expansion).

tagname.attributes
Defines the complete attribute list for the element tagname, except for @class. The attribute list
declaration can be overridden in element-configuration modules (constraint and expansion).

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 412 of 471

tagname.element
Provides the actual element-type definition. It contains an <element> element whose @name
value is the element type name and whose content is a reference to the tagname.content
and tagname.attlist patterns.

tagname.attlist
Contains an additional attribute-list pattern with a @combine attribute set to the value
"interleave". This pattern contains only a reference to the tagname.attributes pattern. This
pattern enables the integration of attribute specializations.

The following example shows the declaration for the <topichead> element, including the definition
for each pattern described above.

 <div>
 <a:documentation>Topic Head</a:documentation>
 <define name="topichead.content">
 <optional>
 <ref name="topicmeta"/>
 </optional>
 <zeroOrMore>
 <choice>
 <ref name="data.elements.incl"/>
 <ref name="navref"/>
 <ref name="topicref"/>
 </choice>
 </zeroOrMore>
 </define>
 <define name="topichead.attributes">
 <optional>
 <attribute name="keys"/>
 </optional>
 <ref name="topicref-atts"/>
 <ref name="univ-atts"/>
 </define>
 <define name="topichead.element">
 <element name="topichead">
 <a:documentation/>
 <ref name="topichead.attlist"/>
 <ref name="topichead.content"/>
 </element>
 </define>
 <define name="topichead.attlist" combine="interleave">
 <ref name="topichead.attributes"/>
 </define>

 </div>

idElements pattern contribution

Element types that declare the @id attribute as type "ID", including all topic and map element types,
provide a declaration for the idElements pattern. This is required to correctly configure the "any"
pattern override in document-type shells and avoid errors from RELAX NG parsers. The declaration
is specified with a @combine attribute set to the value "choice".

For example:

<div>
 <a:documentation>LONG NAME: Map</a:documentation>
 <!-- ... -->
 <define name="idElements" combine="choice">
 <ref name="map.element"/>
 </define>
</div>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 413 of 471

Specialization attribute declarations

A vocabulary module must define a @class attribute for every specialized element. This is done in a
section at the end of each module that includes a tagname.attlist pattern for each element type
that is defined in the module. The declarations can occur in any order.

The tagname.attlist pattern for each element defines the value for the @class attribute for the
element. @class is declared as an optional attribute. The default value is declared using the
@a:defaultValue attribute, and the value of the attribute is constructed according to the rules in
8.3.6 The class attribute rules and syntax (188).

For example:

<define name="topichead.attlist" combine="interleave">
 <optional>
 <attribute name="class"
 a:defaultValue="+ map/topicref mapgroup-d/topichead "
 />
 </optional>
</define>

C.3.4 RELAX NG: Coding requirements for structural modules
A structural vocabulary module defines a new topic or map type as a specialization of a topic or map type.

Required topic and map element attributes
The topic or map element type references the arch-atts pattern, which defines the
@DITAArchVersion attribute in the DITA architecture namespace and sets the attribute to the version of
DITA. In addition, the topic or map element type references the specializations-att pattern, which
pulls in a definition for the @specializations attribute.

For example, the following definition references the arch-atts and specializations-att patterns
as part of the definition for the <concept> element.

<div>
 <a:documentation> LONG NAME: Concept </a:documentation>
 <!-- ... -->
 <define name="concept.attlist" combine="interleave">
 <ref name="concept.attributes"/>
 <ref name="arch-atts"/>
 <ref name="specializations-att"/>
 </define>
 <!-- ... -->
</div>

The @DITAArchVersion and @specializations attributes give processors a reliable way to check
the DITA version and the attribute domains that are used.

Controlling nesting in topic types
A structural module that defines a new topic type typically defines an info-types style pattern to
specify a default for what topic types are permitted to nest. Document-type shells then can control how
topics are allowed to nest by redefining the pattern.

The following rules apply when using a pattern to control topic nesting.

Pattern name

The pattern name is the topic element name plus the suffix -info-types.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 414 of 471

For example, the info-types pattern for the concept topic type is concept-info-types.

Pattern value

To set up default topic-nesting rules, set the pattern to the desired topic elements. The default topic
nesting is used when a document-type shell does not set up different rules.

For example:

<div>
 <a:documentation>INFO TYPES PATTERNS</a:documentation>
 <define name="mytopic-info-types">
 <ref name="subtopictype-01.element"/>
 <ref name="subtopictype-02.element"/>
 </define>
 <!-- ... -->
</div>

To disable topic nesting, specify the <empty> element.

For example:

<define name="learningAssessment-info-types">
 <empty/>
</define>

The info-types pattern also can be used to refer to common nesting rules across the document-
type shell.

For example:

<div>
 <a:documentation>INFO TYPES PATTERNS</a:documentation>
 <define name="mytopic-info-types">
 <ref name="info-types"/>
 </define>
 <!-- ... -->
</div>

Content model of the root element

In the declaration of the root element of a topic type, the last position in the content model is the
topictype-info-types pattern.

For example, the <concept> element places the pattern after <related-links>:

<div>
 <a:documentation>LONG NAME: Concept</a:documentation>
 <define name="concept.content">
 <!-- ... -->
 <optional>
 <ref name="related-links"/>
 </optional>
 <zeroOrMore>
 <ref name="concept-info-types"/>
 </zeroOrMore>
 </define>
</div>

In certain cases, you do not need to use the info-types pattern to control topic nesting:

• If a topic type will never permit topic nesting, regardless of context, it can be defined without any
pattern or any nested topics.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 415 of 471

• If a topic type will allow only specific nesting patterns, such as allowing only other topic types that
are defined in the same module, it can nest those topics directly in the same way that other
nested elements are defined.

C.3.5 RELAX NG: Coding requirements for element-domain modules
Element-domain modules declare an extension pattern for each element that is extended by the domain.
These patterns are used when including the domain module in document-type shells.
Pattern name

The name of the pattern is the abbreviation for the domain, followed by a hyphen ("-"), and the name
of the element that is extended.

For example, the name of the pattern for the highlighting domain that extends the <ph> element is
hi-d-ph.

Pattern definition

The pattern consists of a choice group that contains references to element-type name patterns. Each
extension of the base element type is referenced.

The following code sample shows the pattern for the elements defined in the highlighting domain:

<a:documentation>DOMAIN EXTENSION PATTERNS</a:documentation>

<define name="hi-d-ph">
 <choice>
 <ref name="b.element"/>
 <ref name="i.element"/>
 <ref name="line-through.element"/>
 <ref name="overline.element"/>
 <ref name="sup.element"/>
 <ref name="sub.element"/>
 <ref name="tt.element"/>
 <ref name="u.element"/>
 </choice>
</define>

Extension pattern

For each element type that is extended by the element-domain module, the module extends the
element-type pattern with a @combine value of "choice" that contains a reference to the domain
pattern.

For example, the following pattern adds the highlight domain specializations of the <ph> element to
the content model of the <ph> element:

<define name="ph" combine="choice">
 <ref name="hi-d-ph"/>
</define>

Because the pattern uses a @combine value of "choice", the effect is that the domain-provided
elements automatically are added to the effective content model of the extended element in any
grammar that includes the domain module.

C.3.6 RELAX NG: Coding requirements for attribute-domain modules
An attribute-domain vocabulary module declares a new attribute specialized from either the @props or
@base attribute.

The name of an attribute domain is the name of the attribute plus "Att". For example, for the attribute
named @deliveryTarget, the attribute-domain name is "deliveryTargetAtt". The attribute-domain name
is used to construct pattern names for the domain.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 416 of 471

An attribute-domain module consists of a single file, which has three sections:

Specializations attribute contribution

The contribution to the @specializations attribute is documented in the module. The value is
constructed according to the rules found in 8.3.7 The specializations attribute rules and syntax (190).

The OASIS grammar files use a <domainsContribution> element to document the contribution;
this element is used to help enable generation of DTD and XSD grammar files. An XML comment or
<a:documentation> element also can be used.

Attribute declaration pattern

The specialized attribute is declared in a pattern named domainName-d-attribute. The attribute
is defined as optional.

For example, the following code samples shows the the @audience specialization of @props:

<define name="audienceAtt-d-attribute">
 <optional>
 <attribute name="audience" dita:since="2.0">
 <a:documentation>Specifies the audience to which an element applies.</
a:documentation>
 </attribute>
 </optional>
</define>

Attribute extension pattern

The attribute extension pattern extends either the @props or @base attribute-list pattern to include
the attribute specialization.

Specializations of @props

The pattern is named props-attribute-extensions. The pattern specifies a @combine
value of "interleave", and the content of the pattern is a reference to the specialized-attribute
declaration pattern.

For example:

<define name="props-attribute-extensions" combine="interleave">
 <ref name="audienceAtt-d-attribute"/>
</define>

Specializations of @base

The pattern is named base-attribute-extensions. The pattern specifies a @combine
value of "interleave", and the content of the pattern is a reference to the specialized-attribute
declaration pattern.

For example:

<define name="base-attribute-extensions" combine="interleave">
 <ref name="myBaseSpecializationAtt-d-attribute"/>
</define>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 417 of 471

C.3.7 RELAX NG: Coding requirements for element-configuration modules
An element-configuration module (constraint and expansion) redefines the content model or attribute list
for one or more elements.

Implementation of element-configuration modules
Element-configuration modules are implemented by importing the element-configuration modules into a
document-type shell in place of the vocabulary module that is redefined. The element-configuration
module itself imports the base vocabulary module; within the import, the module redefines the patterns as
needed to implement the constraint, expansion, or both.

Constraint modules

For example, a constraint module that modifies the <topic> element imports the base module
topicMod.rng. Within that import, it constrains the topic.content pattern:

 <div>
 <a:documentation>ATTRIBUTES AND CONTENT MODEL OVERRIDES</a:documentation>
 <include href="urn:pubid:oasis:names:tc:dita:rng:topicMod.rng:2.0">
 <define name="topic.content">
 <ref name="title"/>
 <ref name="shortdesc"/>
 <optional>
 <ref name="prolog"/>
 </optional>
 <optional>
 <ref name="body"/>
 </optional>
 </define>
 </include>
 </div>

Expansion modules

For example, an expansion module that modifies the content model of <section> imports the base
module topicMod.rng. Within that import, it expands the section.content pattern:

 <a:documentation>CONTENT MODEL AND ATTRIBUTE LIST OVERRIDES</a:documentation>
 <include href="urn:pubid:oasis:names:tc:dita:rng:topicMod.rng:2.0">
 <define name="section.content">
 <optional>
 <ref name="title"/>
 </optional>
 <optional>
 <ref name="sectionDesc"/>
 </optional>
 <zeroOrMore>
 <ref name="section.cnt"/>
 </zeroOrMore>
 </define>
 </include>
 </div>

Note that the specialized element <sectionDesc> must be declared in an element-domain module
that also is integrated into the document-type shell.

Combining multiple element-configuration modules
Because the element-configuration module imports the module that it modifies, only one element-
configuration module can be used per vocabulary module; otherwise the vocabulary module would be
imported multiple times. If multiple element configurations are combined for a single vocabulary module,
they need to be implemented in one of the following ways:

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 418 of 471

Combined into a single element-configuration module

The element configurations can be combined into a single module.

For example, when combining separate constraints for <section> and <shortdesc>, a single
module can be defined as follows:

<include href="topicMod.rng">
 <define name="section.content">
 <!-- Constrained model for section -->
 </define>
 <define name="shortdesc.content">
 <!-- Constrained model for shortdesc -->
 </define>
</include>

Chaining element-configuration modules

Element-configuration modules can be chained so that each element-configuration module imports
another, until the final element-configuration module imports the base vocabulary module.

For example, when combining separate constraints for <section>, <shortdesc>, and from
the base vocabulary, the <section> constraint can import the <shortdesc> constraint, which in
turn imports the constraint, which finally imports topicMod.rng.

Related concepts
Examples: Constraints implemented using RNG (424)
This section of the specification contains examples of constraints implemented using RNG

Examples: Expansion implemented using RNG (435)
This section of the specification contains examples of extension modules implemented using RNG.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 419 of 471

D Constraint modules
This section of the specification contains examples of constraint modules implemented using both DTD
and RNG.

Related concepts
Constraints (196)
Constraint modules restrict content models or attribute lists for specific element types, remove certain
extension elements from an integrated domain module, or replace base element types with domain-
provided, extension element types.

D.1 Examples: Constraints implemented using DTDs
This section of the specification contains examples of constraints implemented using DTD.

Related concepts
DTD: Coding requirements for element-configuration modules (406)
Element-configuration modules (constraint and expansion) have specific coding requirements.

D.1.1 Example: Restrict the content model for the <topic> element using
DTD
In this scenario, the DITA architect for Acme Incorporated wants to redefine the content model for the
topic document type. They want to omit certain elements, make the <shortdesc> element required, and
disallow topic nesting.

Specifically, the DITA architect wants to redefine the content model in the following ways:

• Remove <abstract>
• Require <shortdesc>
• Remove <related-links>
• Remove the %task-info-types; entity in order to disallow topic nesting

1. The DITA architect creates a constraint module: acme-TopicConstraint.mod.
2. They add the following content to acme-TopicConstraint.mod:

<!-- === -->
<!-- CONSTRAINED TOPIC ENTITIES -->
<!-- === -->

<!-- Declares the entities referenced in the constrained content -->
<!-- model. -->

<!ENTITY % title "title">
<!ENTITY % shortdesc "shortdesc">
<!ENTITY % prolog "prolog">
<!ENTITY % body "body">

<!-- Defines the constrained content model for <topic>. -->

<!ENTITY % topic.content
 "((%title;),
 (%shortdesc;),
 (%prolog;)?,

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 420 of 471

 (%body;)?)"
>

3. They add the constraint module to the catalog.xml file.
4. They then integrate the constraint module into the document-type shell for topic by adding the

following content to the "Element-Type Configuration Integration section:

<!-- === -->
<!-- ELEMENT-TYPE CONFIGURATION INTEGRATION -->
<!-- === -->

<!ENTITY % topic-constraints-c-def
 PUBLIC "-//ACME//ELEMENTS DITA Topic Constraint//EN"
 "acme-TopicConstraint.mod">
%topic-constraints-c-def;

5. They check their test topic to ensure that the content model is modified as expected.

D.1.2 Example: Constrain attributes for the <section> element using DTD
In this scenario, a DITA architect wants to redefine the attributes for the <section> element. They want
to make the @id attribute required.

1. The DITA architect creates a constraint module: idRequiredSectionContraint.mod.
2. They add the following content to idRequiredSectionContraint.mod:

<!-- Declares the entities referenced in the constrained content -->
<!-- model. -->

<!ENTITY % localization-atts
 "translate
 (no |
 yes |
 -dita-use-conref-target)
 #IMPLIED
 xml:lang
 CDATA
 #IMPLIED
 dir
 (lro |
 ltr |
 rlo |
 rtl |
 -dita-use-conref-target)
 #IMPLIED"
>
<!ENTITY % filter-atts
 "props
 CDATA
 #IMPLIED
 %props-attribute-extensions;"
>
<!ENTITY % select-atts
 "%filter-atts;
 base
 CDATA
 #IMPLIED
 %base-attribute-extensions;
 importance
 (default |
 deprecated |
 high |
 low |
 normal |
 obsolete |
 optional |
 recommended |
 required |
 urgent |
 -dita-use-conref-target)

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 421 of 471

 #IMPLIED
 rev
 CDATA
 #IMPLIED
 status
 (changed |
 deleted |
 new |
 unchanged |
 -dita-use-conref-target)
 #IMPLIED"
>
<!ENTITY % conref-atts
 "conref
 CDATA
 #IMPLIED
 conrefend
 CDATA
 #IMPLIED
 conaction
 (mark |
 pushafter |
 pushbefore |
 pushreplace |
 -dita-use-conref-target)
 #IMPLIED
 conkeyref
 CDATA
 #IMPLIED"
>
<!-- Redefines the attributes available on section -->

<!ENTITY % section.attributes
 "id
 ID
 #REQUIRED
 %conref-atts;
 %select-atts;
 %localization-atts;
 outputclass
 CDATA
 #IMPLIED"
>

Note that the DITA architect had to declare all the parameter entities that are referenced in the
redefined attributes for <section>. If they did not do so, none of the attributes that are declared
in the parameter entities would be available on the <section> element. Furthermore, since the
%select-atts; parameter entity references the %filter-atts; parameter entity, the
%filter-atts; must be declared and it must precede the declaration for the %select-atts;
parameter entity. The %props-attribute-extensions; and %base-attribute-
extensions; parameter entities do not need to be declared in the constraint module, because
they are declared in the document-type shells before the inclusion of the constraint module.

3. They add the constraint module to the catalog.xml file.
4. They then integrate the constraint module into the applicable document-type shells by adding the

following code:

<!-- === -->
<!-- ELEMENT-TYPE CONFIGURATION INTEGRATION -->
<!-- === -->

<!ENTITY % section-constraints-c-def
 PUBLIC "-//ACME//ELEMENTS DITA 2.0 Section Constraint//EN"
 "idRequiredSectionContraint.mod">
%section-constraints-c-def;

5. They check their test topic to ensure that the attribute list is modified as expected.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 422 of 471

D.1.3 Example: Constrain a domain module using DTD
In this scenario, a DITA architect wants to use only a subset of the elements defined in the highlighting
domain. They want to use and <i> but not any other of the elements in the domain. They want to
integrate this constraint into the document-type shell for task.

Specifically, the DITA architect wants to redefine the content model in the following ways:

• Use and <i>
• Remove <line-through>, <overline>, <sup>, <sup>, <tt>, and <u>
1. The DITA architect creates a constraint module: acme-HighlightDomainConstraint.mod.
2. They add the following content to acme-HighlightDomainConstraint.mod:

<!-- === -->
<!-- CONSTRAINED HIGHLIGHT DOMAIN ENTITIES -->
<!-- === -->

<!ENTITY % HighlightingDomain-c-ph "b | i" >

3. They add the constraint module to the catalog.xml file.
4. They then integrate the constraint module into the company-specific, document-type shell for the

task topic by adding the content in the "DOMAIN CONSTRAINT INTEGRATION" section:

<!-- === -->
<!-- DOMAIN CONSTRAINT INTEGRATION -->
<!-- === -->

<!ENTITY % HighlightDomain-c-dec
 PUBLIC "-//ACME//ENTITIES DITA Highlighting Domain Constraint//EN"
 "acme-HighlightDomainConstraint.mod"
>%HighlightDomain-c-dec;

5. In the "DOMAIN EXTENSIONS" section, they replace the parameter entity for the highlighting
domain with the parameter entity for the constrained highlighting domain:

<!ENTITY % ph "ph |
 %HighlightDomain-c-ph; |
 %sw-d-ph; |
 %ui-d-ph;
 ">

6. They check their test topic to ensure that the content model is modified as expected.

D.1.4 Example: Replace a base element with the domain extensions using
DTD
In this scenario, a DITA architect wants to remove the <ph> element but allow the extensions of <ph>
that exist in the highlighting, programming, software, and user interface domains.

1. In the "DOMAIN EXTENSIONS" section, the DITA architect removes the reference to the <ph>
element:

<!-- Removed "ph | " so as to make <ph> not available, only the domain extensions. -->
<!ENTITY % ph "%pr-d-ph; |
 %sw-d-ph; |
 %ui-d-ph;
 ">

Note Because no other entities are modified or declared outside of the usual "DOMAIN
EXTENSIONS" section, this completes the architect's task. Because no new grammar file or
entity is created that would highlight this change, adding a comment to highlight the constraint
becomes particularly important, as shown in the example above.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 423 of 471

D.1.5 Example: Apply multiple constraints to a single document-type shell
using DTD
You can apply multiple constraints to a single document-type shell. However, there can be only one
constraint for a given element or domain.

Here is a list of constraint modules and what they do:

File name What it constrains Details

example-TopicConstraint.mod <topic> • Removes <abstract>
• Makes <shortdesc>

required
• Removes <related-

links>
• Disallows topic nesting

example-
SectionConstraint.mod

<section> Makes @id required

example-
HighlightingDomainConstrain
t.mod

Highlighting domain Reduces the highlighting domain
elements to and <i>

N/A <ph> Remove the <ph> element, allowing
only domain extensions (does not
require a .mod file)

All of these constraints can be integrated into a single document-type shell for <topic>, since they
constrain distinct element types and domains. The constraint for the highlighting domain typically is
located in the "DOMAIN CONSTRAINT INTEGRATION" section, and it must be integrated before the
"DOMAIN ENTITIES" section. The other constraints typically are located in the "ELEMENT-TYPE
CONFIGURATION INTEGRATION" section, and the order in which they are listed does not matter.

D.2 Examples: Constraints implemented using RNG
This section of the specification contains examples of constraints implemented using RNG

Related concepts
RELAX NG: Coding requirements for element-configuration modules (418)
An element-configuration module (constraint and expansion) redefines the content model or attribute
list for one or more elements.

D.2.1 Example: Restrict the content model for the <topic> element using
RNG
In this scenario, the DITA architect for Acme Incorporated wants to redefine the content model for the
topic document type. They want to omit certain elements, make the <shortdesc> element required, and
disallow topic nesting.

Specifically, the DITA architect wants to redefine the content model in the following ways:

• Remove <abstract>
• Require <shortdesc>
• Remove <related-links>
• Remove the task-info-typespattern in order to disallow topic nesting

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 424 of 471

1. The DITA architect creates a constraint module: acme-TopicConstraintMod.rng.
2. They update the catalog.xml file to include the new constraint module.
3. They add the following content to acme-TopicConstraint.mod:

<div>
 <a:documentation>CONTENT MODEL OVERRIDES</a:documentation>
 <include href="urn:pubid:oasis:names:tc:dita:rng:topicMod.rng:2.0">
 <define name="topic.content" combine="interleave">
 <ref name="title"/>
 <ref name="shortdesc"/>
 <optional>
 <ref name="prolog"/>
 </optional>
 <optional>
 <ref name="body"/>
 </optional>
 </define>
 </include>
</div>

Comment by Kristen J Eberlein on 21 April 2021

I know that the override won't happen without combine="interleave", but I don't know if we
cover that in the coding requirements topic. If people start with copying-and-pasting from the
module that they are overriding, they won't have that and will get errors.

Disposition: Unassigned

4. They then integrate the constraint module into the document-type shell for topic by adding an
<include> element in the "ELEMENT-TYPE CONFIGURATION INTEGRATION" section:

<div>
 <a:documentation>ELEMENT-TYPE CONFIGURATION INTEGRATION</a:documentation>
 <include href="acme-TopicConstraintMod.rng"/>
</div>

5. They then remove the <include> statement that references topicMod.rng from the "MODULE
INCLUSIONS" section:

<div>
 <a:documentation>MODULE INCLUSIONS </a:documentation>
 <include href="urn:pubid:oasis:names:tc:dita:rng:topicMod.rng:2.0"/>
 <include href="urn:pubid:oasis:names:tc:dita:rng:audienceAttDomain.rng:2.0"/>
 <include href="urn:pubid:oasis:names:tc:dita:rng:deliveryTargetAttDomain.rng:2.0"/>
 <include href="urn:pubid:oasis:names:tc:dita:rng:platformAttDomain.rng:2.0"/>
 <include href="urn:pubid:oasis:names:tc:dita:rng:productAttDomain.rng:2.0"/>
 <include href="urn:pubid:oasis:names:tc:dita:rng:otherpropsAttDomain.rng:2.0"/>
 <include href="urn:pubid:oasis:names:tc:dita:rng:highlightDomain.rng:2.0"/>
 </div>

6. They check their test topic to ensure that the content model is modified as expected.

D.2.2 Example: Constrain attributes for the <section> element using RNG
In this scenario, a DITA architect wants to redefine the attributes for the <section> element. They want
to make the @id attribute required.

1. The DITA architect creates a constraint module: id-requiredSectionContraintMod.rng.
2. They update the catalog.xml file to include the new constraint module.
3. They add the following content to the constraint module:

<?xml version="1.0" encoding="UTF-8"?>
<grammar
 xmlns="http://relaxng.org/ns/structure/1.0"

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 425 of 471

 xmlns:dita="http://dita.oasis-open.org/architecture/2005/"
 xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">

 <div>
 <a:documentation>ATTRIBUTE LIST OVERRIDES</a:documentation>
 <include href="urn:pubid:oasis:names:tc:dita:rng:topicMod.rng:2.0">
 <define name="section.attributes">
 <attribute name="id">
 <data type="NMTOKEN"/>
 </attribute>
 <ref name="conref-atts"/>
 <ref name="select-atts"/>
 <ref name="localization-atts"/>
 <optional>
 <attribute name="outputclass"/>
 </optional>
 </define>
 </include>
 </div>

</grammar>

Note that unlike a constraint module that is implemented using DTD, this constraint module did
not need to re-declare the patterns that are referenced in the redefinition of the content model for
<section>

4. They then integrate the constraint module into the document-type shell for topic by adding an
<include> element in the "CONTENT CONSTRAINT INTEGRATION" section:

<div>
 <a:documentation>CONTENT CONSTRAINT INTEGRATION</a:documentation>
 <include href="id-requiredSectionConstraintMod.rng"/>
</div>

5. They then remove the <include> statement that references topicMod.rng from the "MODULE
INCLUSIONS" section:

<div>
 <a:documentation>MODULE INCLUSIONS </a:documentation>
 <include href="urn:pubid:oasis:names:tc:dita:rng:topicMod.rng:2.0"/>
 <include href="urn:pubid:oasis:names:tc:dita:rng:audienceAttDomain.rng:2.0"/>
 <include href="urn:pubid:oasis:names:tc:dita:rng:deliveryTargetAttDomain.rng:2.0"/>
 <include href="urn:pubid:oasis:names:tc:dita:rng:platformAttDomain.rng:2.0"/>
 <include href="urn:pubid:oasis:names:tc:dita:rng:productAttDomain.rng:2.0"/>
 <include href="urn:pubid:oasis:names:tc:dita:rng:otherpropsAttDomain.rng:2.0"/>
 <include href="urn:pubid:oasis:names:tc:dita:rng:highlightDomain.rng:2.0"/>
 </div>

6. They check their test topic to ensure that the content model is modified as expected.

D.2.3 Example: Constrain a domain module using RNG
In this scenario, a DITA architect wants to use only a subset of the elements defined in the highlighting
domain. They want to use and <i> but not any other of the elements in the domain. They want to
integrate this constraint into the document-type shell for task.

Specifically, the DITA architect wants to redefine the content model in the following ways:

• Use and <i>
• Remove <line-through>, <overline>, <sup>, <sup>, <tt>, and <u>

Note that when using RNG, domains can be constrained directly in the document-type shells.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 426 of 471

1. They open the document-type shell for topic in an XML editor, and then they modify the "MODULE
INCLUSIONS" division to exclude the elements that they do not want the implementation to use:

<div>
 <a:documentation>MODULE INCLUSIONS</a:documentation>
 ...
 <include href="highlightDomain.rng">
 <define name="line-through.element">
 <notAllowed/>
 </define>
 <define name="overline.element">
 <notAllowed/>
 </define>
 <define name="sub.element">
 <notAllowed/>
 </define>
 <define name="sup.element">
 <notAllowed/>
 </define>
 <define name="tt.element">
 <notAllowed/>
 </define>
 <define name="u.element">
 <notAllowed/>
 </define>
 </include>
 ..
</div>

Note The DITA architect made a choice as to where in the document-type shell they would
implement the constraint. It can be placed either in the "Element-type configuration
integration" or the "Module inclusions" section.

2. They make similar changes to all the other document-type shells in which they want to constrain
the highlighting domain.

D.2.4 Example: Replace a base element with the domain extensions using
RNG
In this scenario, the DITA architect wants to remove the <ph> element but allow the extensions of <ph>
that exist in the highlight, programming, software, and user interface domains.

1. They open the document-type shell for topic in an XML editor, and then they modify the "MODULE
INCLUSIONS" division to exclude <ph>:

<div>
 <a:documentation>MODULE INCLUSIONS</a:documentation>
 <include href="urn:pubid:oasis:names:tc:dita:rng:topicMod.rng:2.0">
 <define name="ph.element">
 <notAllowed/>
 </define>
 </include>
 ...
</div>

2. They make similar changes to all the other document-type shells in which they want <ph> to not
be available

D.2.5 Example: Apply multiple constraints to a single document-type shell
using RNG
In this scenario, the DITA architect wants to apply multiple constraints to a document-type shell.

Here is a list of the constraint modules and what they do:

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 427 of 471

File name What it constrains Details

example-TopicConstraint.mod <topic> • Removes <abstract>
• Makes <shortdesc>

required
• Removes <related-

links>
• Disallows topic nesting

example-
SectionConstraint.mod

<section> Makes @id required

Not applicable Highlighting domain Reduces the highlighting domain
elements to and <i>

Not applicable <ph> Remove the <ph> element, allowing
only domain extensions

The constraint modules that target the <topic> and <section > elements must be combined, since
both elements are defined in topicMod.rng. The other constraints can be implemented directly in the
document-type shell.

1. The DITA architect creates a constraint module that combines the constraints from example-
TopicConstraint.mod and example-SectionConstraint.mod:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="urn:pubid:oasis:names:tc:dita:rng:vocabularyModuleDesc.rng"
 schematypens="http://relaxng.org/ns/structure/1.0"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:dita="http://dita.oasis-open.org/architecture/2005/"
 xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <div>
 <a:documentation>CONTENT MODEL AND ATTRIBUTE LIST OVERRIDES</a:documentation>
 <include href="topicMod.rng">
 <define name="section.attributes">
 <attribute name="id">
 <data type="NMTOKEN"/>
 </attribute>
 <ref name="conref-atts"/>
 <ref name="select-atts"/>
 <ref name="localization-atts"/>
 <optional>
 <attribute name="outputclass"/>
 </optional>
 </define>
 <define name="topic.content">
 <ref name="title"/>
 <ref name="shortdesc"/>
 <optional>
 <ref name="prolog"/>
 </optional>
 <optional>
 <ref name="body"/>
 </optional>
 </define>
 </include>
 </div>
</grammar>

2. In the document-type shell, they integrate the constraint module (and remove the inclusion
statement for topicMod.rng):

<div>
 <a:documentation>ELEMENT-TYPE CONFIGURATION INTEGRATION</a:documentation>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 428 of 471

 <include href="acme-SectionTopicContraintMod.rng"/>
</div>

3. To constrain the highlight domain, they modify the include statement for the domain module:

<div>
 <a:documentation>MODULE INCLUSIONS</a:documentation>
 ...
 <include href="highlightDomain.rng">
 <define name="line-through.element">
 <notAllowed/>
 </define>
 <define name="overline.element">
 <notAllowed/>
 </define>
 <define name="sub.element">
 <notAllowed/>
 </define>
 <define name="sup.element">
 <notAllowed/>
 </define>
 <define name="tt.element">
 <notAllowed/>
 </define>
 <define name="u.element">
 <notAllowed/>
 </define>
 </include>
 ..
</div>

4. Finally, to disallow <ph>, they add the following statement to the constraint module:

 <define name="ph.element">
 <notAllowed/>
 </define>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 429 of 471

E Expansion modules
This section of the specification contains examples of expansion modules implemented using both DTD
and RNG.

Related concepts
Expansion modules (198)
Expansion modules enable the extension of content models and attribute lists for individual elements.
Expansion modules are the opposite of constraints. They add elements and attributes to specific
content models and attribute lists, rather than removing them.

E.1 Examples: Expansion implemented using DTDs
This section of the specification contains examples of extension modules that are implemented using
DTDs.

Related concepts
DTD: Coding requirements for element-configuration modules (406)
Element-configuration modules (constraint and expansion) have specific coding requirements.

E.1.1 Example: Adding an element to the <section> element using DTDs
In this scenario, a DITA architect wants to modify the content model for the <section> element. The
DITA architect wants to add an optional <sectionDesc> element that is specialized from <p>.

To accomplish this, the DITA architect needs to create the following modules and integrate them into the
document-type shell:

• An element-domain specialization module that defines the <sectionDesc> element
• An expansion module that adds the <sectionDesc> element to the content model for

<section>
1. First, the DITA architect creates the element specialization module: sectionDescDomain.mod.

This single .mod file defines the parameter entity, content model, attributes, and value for the
@class attribute for <sectionDesc>.

<?xml version="1.0" encoding="UTF-8"?>

<!ENTITY % sectionDesc "sectionDesc">

<!ENTITY % sectionDesc.content "(%para.cnt;)*">
<!ENTITY % sectionDesc.attributes "%univ-atts;">

<!ELEMENT sectionDesc %sectionDesc.content;>
<!ATTLIST sectionDesc %sectionDesc.attributes;>

<!ATTLIST sectionDesc class CDATA "+ topic/p sectionDesc-d/sectionDesc ">

2. The DITA architect adds the element specialization module to the catalog.xml file.
3. Next, the DITA architect modifies the applicable document-type shell to integrate the applicable

element specialization module:

<!-- === -->
<!-- DOMAIN ELEMENT INTEGRATION -->
<!-- === -->

<!-- ... other domains ... -->

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 430 of 471

<!ENTITY % sectionDesc-d-def
 PUBLIC "-//ACME//ELEMENTS DITA 2.0 Section Description Domain//EN"
 "sectionDescDomain.mod"
>%sectionDesc-d-def;

At this point, the new domain is integrated into the topic document-type shell. However, the new
element is not added to the content model for <section>.

4. Next, the DITA architect creates an expansion module: acme-SectionExpansion.mod. This
module adds the <sectionDesc> element to the content model of <section>.

<?xml version="1.0" encoding="UTF-8"?>

<!-- Declares the entities referenced in the modified content -->
<!-- model. -->

<!ENTITY % dl "dl">
<!ENTITY % div "div">
<!ENTITY % fig "fig">
<!ENTITY % image "image">
<!ENTITY % lines "lines">
<!ENTITY % lq "lq">
<!ENTITY % note "note">
<!ENTITY % object "object">
<!ENTITY % ol "ol">
<!ENTITY % p "p">
<!ENTITY % pre "pre">
<!ENTITY % simpletable "simpletable">
<!ENTITY % sl "sl">
<!ENTITY % table "table">
<!ENTITY % ul "ul">
<!ENTITY % cite "cite">
<!ENTITY % include "include">
<!ENTITY % keyword "keyword">
<!ENTITY % ph "ph">
<!ENTITY % q "q">
<!ENTITY % term "term">
<!ENTITY % text "text">
<!ENTITY % tm "tm">
<!ENTITY % xref "xref">
<!ENTITY % data "data">
<!ENTITY % foreign "foreign">
<!ENTITY % title "title">
<!ENTITY % draft-comment "draft-comment">
<!ENTITY % fn "fn">
<!ENTITY % indexterm "indexterm">
<!ENTITY % required-cleanup "required-cleanup">
<!ENTITY % sectionDesc "sectionDesc">

<!-- Defines the modified content model for <section>. -->

<!ENTITY % section.content
 "(#PCDATA |
 %dl; |
 %div; |
 %fig; |
 %image; |
 %lines; |
 %lq; |
 %note; |
 %object; |
 %ol; |
 %p; |
 %pre; |
 %simpletable; |
 %sl; |
 %table; |
 %ul; |
 %cite; |
 %include; |
 %keyword; |
 %ph; |

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 431 of 471

 %q; |
 %term; |
 %text; |
 %tm; |
 %xref; |
 %data; |
 %foreign; |
 %title; |
 %draft-comment; |
 %fn; |
 %indexterm; |
 %required-cleanup; |
 %sectionDesc;)*"
>

Note that the DITA architect needed to explicitly declare all the elements, rather than using the
%section.cnt; parameter entity that is used in the definition of <section>. Because the
element-configuration modules are integrated into the document-type shell before the base
grammar modules, none of the parameter entities that are used in the base DITA vocabulary
modules are available.

5. Finally, the DITA architect integrates the expansion module into the document-type shell:

<!-- === -->
<!-- ELEMENT-TYPE CONFIGURATION INTEGRATION -->
<!-- === -->

<!-- Other constraint and expansion modules -->

<!ENTITY % acmeSection-def
 PUBLIC "-//ACME//ELEMENTS DITA 2.0 Section Expansion//EN"
 "acme-SectionExpansion.mod"
>%acmeSection-def;

6. After updating the catalog.xml file to include the expansion module and testing it, the work is
done.

E.1.2 Example: Adding an attribute to certain table elements using DTDs
In this scenario, a company makes extensive use of complex tables to present product listings. They
occasionally highlight individual cells, rows, or columns for various purposes. The DITA architect wants to
implement a semantically meaningful way to identify the purpose of various table elements.

The DITA architect decides to create a new attribute (@cell-purpose) and add it to the attribute lists of
the following elements:

• <colspec>
• <entry>
• <row>
• <stentry>
• <strow>

The new attribute will be specialized from @base, and it will take a small set of tokens as values.

The DITA architect decides to integrate the attribute declaration and its assignment to elements into a
single expansion module. An alternate approach would be to put each attribute-list pattern in its own
separate expansion module, thus allowing DITA architects who construct document-type shells to decide
the elements to which to apply the attribute.

1. First, the DITA architect creates the expansion module for the @cell-purpose attribute: acme-
cellPurposeAttExpansion.ent.

<!-- Define the attribute -->
<!ENTITY % cellPurposeAtt-d-attribute-expansion

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 432 of 471

 "cell-purpose (sale | out-of-stock | new | last-chance | inherit | none) #IMPLIED"
>

<!-- Declare the entity to be used in the @specializations attribute -->
<!ENTITY cellPurposeAtt-d-att "@base/cell-purpose" >

<!-- Add the attribute to the elements. -->
<!ATTLIST entry %cellPurposeAtt-d-attribute-expansion;>
<!ATTLIST row %cellPurposeAtt-d-attribute-expansion;>
<!ATTLIST colspec %cellPurposeAtt-d-attribute-expansion;>
<!ATTLIST strow %cellPurposeAtt-d-attribute-expansion;>
<!ATTLIST stentry %cellPurposeAtt-d-attribute-expansion;>

Note The attribute definition entity is optional. It is used here to enable the DITA architect to
add the same attribute with the same tokens to several elements.

2. They then update the catalog.xml file to include the expansion module.
3. They integrate this module into the applicable document-type shell.

<!-- === -->
<!-- DOMAIN ATTRIBUTES DECLARATIONS -->
<!-- === -->

<!-- ... other domains ... -->

<!ENTITY % cellPurposeAttExpansion-d-dec
 PUBLIC "-//ACME//ENTITIES DITA Cell Purpose Attribute Expansion//EN"
 "cellPurposeAttExpansion.ent"
>%cellPurposeAttExpansion-d-dec;

4. They add the entity for the contribution to the @specializations attribute.

<!-- === -->
<!-- SPECIALIZATIONS ATTRIBUTE OVERRIDE -->
<!-- === -->

<!ENTITY included-domains
 "&audienceAtt-d-att;
 &cellPurposeAtt-d-att;
 &deliveryTargetAtt-d-att;
 &otherpropsAtt-d-att;
 &platformAtt-d-att;
 &productAtt-d-att;"
>

5. After checking the test topic to ensure that the attribute lists are modified as expected, the work is
done.

E.1.3 Example: Adding an existing domain attribute to certain elements
using DTDs
In this scenario, a company wants to use the @otherprops attribute specialization. However, they want
to make the attribute available only on certain elements: <p>, <div>, and <section>.

The DITA architect will need to create an extension module and integrate it into the appropriate
document-type shells.

1. The DITA architect creates an expansion module that adds the @otherprops attribute to the
selected elements: acme-otherpropsAttExpansion.mod. The expansion module contains
the following code:

<?xml version="1.0" encoding="UTF-8"?>

<!-- Add the otherprops attribute to certain elements -->
<!ATTLIST p %otherpropsAtt-d-attribute;>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 433 of 471

<!ATTLIST div %otherpropsAtt-d-attribute;>
<!ATTLIST section %otherpropsAtt-d-attribute;>

Note that the %otherpropsAtt-d-attribute; is defined in the separate attribute-
specialization module that defines the @otherprops attribute.

2. They then update the catalog.xml file to include the expansion module.
3. They integrate the extension module into the applicable document-type shell, after the declaration

for the @otherprops attribute-specialization module:

<!-- === -->
<!-- DOMAIN ATTRIBUTES DECLARATIONS -->
<!-- === -->
...

<!ENTITY % otherpropsAtt-d-dec
 PUBLIC "-//OASIS//ENTITIES DITA 2.0 Otherprops Attribute Domain//EN"
 "otherpropsAttDomain.ent"
>%otherpropsAtt-d-dec;

<!ENTITY % otherprops-expansion-e-def
 PUBLIC "-//ACME//DITA 2.0 Otherprops Expansion//EN"
 "acme-otherpropsAttExpansion.mod"
 >%otherprops-expansion-e-def;

...

4. They remove the reference to the @otherprops attribute from the props-attribute-
extension entity:

<!-- === -->
<!-- DOMAIN ATTRIBUTE EXTENSIONS -->
<!-- === -->

<!ENTITY % base-attribute-extensions
 ""
>

<!ENTITY % props-attribute-extensions
 "%audienceAtt-d-attribute;
 %deliveryTargetAtt-d-attribute;
 %otherpropsAtt-d-attribute;
 %platformAtt-d-attribute;
 %productAtt-d-attribute;"
>

5. They ensure that the included-domains entity contains the @otherprops contribution to the
@specializations attribute:

<!-- === -->
<!-- SPECIALIZATIONS ATTRIBUTE OVERRIDE -->
<!-- === -->

<!ENTITY included-domains
 "&audienceAtt-d-att;
 &deliveryTargetAtt-d-att;
 &otherpropsAtt-d-att;
 &platformAtt-d-att;
 &productAtt-d-att;"
>

6. After checking the test topic to ensure that the attribute lists are modified as expected, the work is
done.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 434 of 471

E.1.4 Example: Aggregating constraint and expansion modules using DTDs
The DITA architect wants to add some extension modules to the document-type shell for topic. The
document-type shell already integrates a number of constraint modules.

The following table lists the constraints that are currently integrated into the document-type shell:

File name What it constrains Details

example-TopicConstraint.mod <topic> • Removes <abstract>
• Makes <shortdesc>

required
• Removes <related-

links>
• Disallows topic nesting

example-
SectionConstraint.mod

<section> • Makes <title> required
• Reduces the content model

of <section> to a smaller
subset

example-
HighlightingDomainConstrain
t.mod

Highlighting domain Reduces the highlighting domain
elements to and <i>

The following table lists the expansion modules that the DITA architect wants to add to the document-type
shell:

File name What it modifies Details

acme-SectionExpansion.mod <section> Adds an optional <sectionDesc>
element to <section>.

example-
dlentryModeAttExpansion.ent

<dlentry> Adds @dlentryMode to the
attributes of <dlentry>.

The constraint and expansion modules that target the <section> element must be combined into a
single element-configuration module. An element can only be targeted by a single element-configuration
module.

E.2 Examples: Expansion implemented using RNG
This section of the specification contains examples of extension modules implemented using RNG.

Related concepts
RELAX NG: Coding requirements for element-configuration modules (418)
An element-configuration module (constraint and expansion) redefines the content model or attribute
list for one or more elements.

E.2.1 Example: Adding an element to the <section> element using RNG
In this scenario, a DITA architect wants to modify the content model for the <section> element. He
wants to add an optional <sectionDesc> element that is specialized from <p>; the <sectionDesc>
can occur once and must be directly after the section title.

To accomplish this, the DITA architect needs to create the following modules and integrate them into the
document-type shells:

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 435 of 471

• An element domain module that defines the <sectionDesc> element
• An expansion module that adds the <sectionDesc> element to the content model for

<section>
1. First, the DITA architect creates the element domain module: sectionDescDomain.rng. It

contains the following code:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="urn:pubid:oasis:names:tc:dita:rng:vocabularyModuleDesc.rng"
 schematypens="http://relaxng.org/ns/structure/1.0"?>
<grammar xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
 xmlns:dita="http://dita.oasis-open.org/architecture/2005/"
 xmlns="http://relaxng.org/ns/structure/1.0">
 <div>
 <a:documentation>DOMAIN EXTENSION PATTERNS</a:documentation>
 </div>
 <div>
 <a:documentation>ELEMENT TYPE NAME PATTERNS</a:documentation>
 <define name="sectionDesc">
 <ref name="sectionDesc.element"/>
 </define>
 </div>
 <div>
 <a:documentation>ELEMENT TYPE DECLARATIONS</a:documentation>
 <div>
 <a:documentation>LONG NAME: Section Description</a:documentation>
 <define name="sectionDesc.content">
 <zeroOrMore>
 <ref name="para.cnt"/>
 </zeroOrMore>
 </define>
 <define name="sectionDesc.attributes">
 <ref name="univ-atts"/>
 </define>
 <define name="sectionDesc.element">
 <element name="sectionDesc" dita:longName="Section Description">
 <a:documentation/>
 <ref name="sectionDesc.attlist"/>
 <ref name="sectionDesc.content"/>
 </element>
 </define>
 <define name="sectionDesc.attlist" combine="interleave">
 <ref name="sectionDesc.attributes"/>
 </define>
 </div>
 </div>
 <div>
 <a:documentation>SPECIALIZATION ATTRIBUTE DECLARATIONS</a:documentation>
 <define name="sectionDesc.attlist" combine="interleave">
 <optional>
 <attribute name="class" a:defaultValue="+ topic/p sectionDesc-d-p/sectionDesc
"/>
 </optional>
 </define>
 </div>
</grammar>

2. The DITA architect adds the element domain module to the catalog.xml file.
3. Next, the DITA architect modifies the document-type shell (in this example, the one for topic) to

integrate the element domain module:

 <div>
 <a:documentation>MODULE INCLUSIONS</a:documentation>
 ...
 <include href="urn:pubid:example:names:tc:dita:rng:sectionDescDomain.rng:2.0"/>
 </div>

At this point, the new domain is integrated into the document-type shell. However, the new
element is not added to the content model for <section>.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 436 of 471

4. Next, the DITA architect created an expansion module (sectionExpansionMod.rng) that adds
the <sectionDesc> element to the content model of <section>:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="urn:pubid:oasis:names:tc:dita:rng:vocabularyModuleDesc.rng"
 schematypens="http://relaxng.org/ns/structure/1.0"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:dita="http://dita.oasis-open.org/architecture/2005/"
 xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <div>
 <a:documentation>CONTENT MODEL AND ATTRIBUTE LIST OVERRIDES</a:documentation>
 <include href="urn:pubid:oasis:names:tc:dita:rng:topicMod.rng:2.0">
 <define name="topic-info-types">
 <ref name="topic.element"/>
 </define>
 <define name="section.content">
 <optional>
 <ref name="title"/>
 </optional>
 <optional>
 <ref name="sectionDesc"/>
 </optional>
 <zeroOrMore>
 <ref name="section.cnt"/>
 </zeroOrMore>
 </define>
 </include>
 </div>
</grammar>

Note that the expansion module directly integrates topicMod.rng.
5. Finally, the DITA architect integrates the expansion module into the document-type shell and

removes the inclusion statement for topicMod.rng:

 <div>
 <a:documentation>ELEMENT-TYPE CONFIGURATION INTEGRATION</a:documentation>
 <include href="sectionExpansionMod.rng"/>
 </div>
 <div>
 <a:documentation>MODULE INCLUSIONS</a:documentation>
 <include href="urn:pubid:oasis:names:tc:dita:rng:topicMod.rng:2.0">
 <define name="topic-info-types">
 <ref name="topic.element"/>
 </define>
 </include>
 ...
 <include href="urn:pubid:example:names:tc:dita:rng:sectionDescDomain.rng:2.0"/>
 </div>

6. After updating the catalog.xml file to include the expansion module and testing, the work is
done.

E.2.2 Example: Adding an attribute to certain table elements using RNG
In this scenario, a company makes extensive use of complex tables to present product listings. They
occasionally highlight individual cells, rows, or columns for various purposes. The DITA architect wants to
implement a semantically meaningful way to identify the purpose of various table elements.

The DITA architect decides to create a new attribute (@cell-purpose) and add it to the content model
of the following elements:

• <entry>
• <row>
• <colspec>
• <stentry>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 437 of 471

• <strow>
The new attribute will be specialized from @base, and it will take a small set of tokens as values.

The DITA architect decides to integrate the attribute declaration and its assignment to elements into a
single expansion module. An alternate approach would be to put each <!ATTLIST declaration in its own
separate expansion module, thus allowing DITA architects who construct document-type shells to decide
the elements to which to apply the attribute.

1. The DITA architect creates an expansion module: cellPurposeAtt.rng. It contains the
following code:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="urn:pubid:oasis:names:tc:dita:rng:vocabularyModuleDesc.rng"
 schematypens="http://relaxng.org/ns/structure/1.0"?>
<grammar
 xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
 xmlns:dita="http://dita.oasis-open.org/architecture/2005/"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">

 <!-- DEFINE THE ATTRIBUTE SPECIALIZATION -->
 <define name="cellPurposeAtt">
 <optional>
 <attribute name="cellPurpose">
 <a:documentation>Specifies the purpose of the table cell. This is a specialized
 attribute for Acme Corporation.
 </a:documentation>
 <choice>
 <value>sale</value>
 <value>out-of-stock</value>
 <value>new</value>
 <value>last-chance</value>
 <value>inherit</value>
 <value>none</value>
 </choice>
 </attribute>
 </optional>
 </define>

 <!-- ASSIGN THE ATTRIBUTE TO CERTAIN ELEMENTS -->
 <define name="entry.attributes" combine="interleave">
 <ref name="cellPurposeAtt"/>
 </define>
 <define name="stentry.attributes" combine="interleave">
 <ref name="cellPurposeAtt"/>
 </define>
 <define name="row.attributes" combine="interleave">
 <ref name="cellPurposeAtt"/>
 </define>
 <define name="strow.attributes" combine="interleave">
 <ref name="cellPurposeAtt"/>
 </define>
 <define name="colspec.attributes" combine="interleave">
 <ref name="cellPurposeAtt"/>
 </define>
</grammar>

2. They then update the catalog.xml file to include the expansion module.
3. They integrate the expansion module into the document-type shell:

<div>
 <a:documentation>MODULE INCLUSIONS</a:documentation>
 ...
 <include href="urn:pubid:example:names:tc:dita:rng:cellPurposeAtt.rng:2.0"/>
 </div>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 438 of 471

4. They specify the value that the @cellPurpose attribute contributes to the @specializations
attribute:

 <div>
 <a:documentation>SPECIALIZATIONS ATTRIBUTE</a:documentation>
 <define name="specializations-att">
 <optional>
 <attribute name="specializations" a:defaultValue="
 @props/audience
 @props/deliveryTarget
 @props/otherprops
 @props/platform
 @props/product
 @base/cellPurpose"/>
 </optional>
 </define>
 </div>

5. After checking the test file to ensure that the attribute lists are modified as expected, the work is
done.

E.2.3 Example: Adding an existing domain attribute to certain elements
using RNG
In this scenario, a company wants to use the @otherprops attribute specialization. However, they want
to make the attribute available only on certain elements: <p>, <div>, and <section>.

The DITA architect will need to create an extension module and integrate it into the appropriate
document-type shells.

1. The DITA architect creates an expansion module that adds the @otherprops attribute to the
selected elements: acme-otherpropsAttExpansion.rng. The expansion module contains
the following content:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="urn:pubid:oasis:names:tc:dita:rng:vocabularyModuleDesc.rng"
 schematypens="http://relaxng.org/ns/structure/1.0"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
 xmlns:dita="http://dita.oasis-open.org/architecture/2005/"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <div>
 <a:documentation>CONTENT MODEL AND ATTRIBUTE LIST OVERRIDES</a:documentation>
 <include href="urn:pubid:oasis:names:tc:dita:rng:topicMod.rng:2.0">
 <define name="topic-info-types">
 <ref name="topic.element"/>
 </define>
 <define name="p.attributes" combine="interleave">
 <optional>
 <attribute name="otherprops"/>
 </optional>
 </define>
 <define name="div.attributes" combine="interleave">
 <optional>
 <attribute name="otherprops"/>
 </optional>
 </define>
 <define name="section.attributes" combine="interleave">
 <optional>
 <attribute name="otherprops"/>
 </optional>
 </define>
 </include>
 </div>
</grammar>

2. They then update the catalog.xml file to include the expansion module.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 439 of 471

3. They integrate the extension module into the applicable document-type shell, and remove the
<include> element for topicMod.rng:

 <div>
 <a:documentation>ELEMENT-TYPE CONFIGURATION INTEGRATION</a:documentation>
 <include href="acme-otherpropsAttExpansion.rng"/>
 </div>
 <div>
 <a:documentation>MODULE INCLUSIONS</a:documentation>
 <include href="urn:pubid:oasis:names:tc:dita:rng:topicMod.rng:2.x"/>
 ...
 <include href="urn:pubid:oasis:names:tc:dita:rng:otherpropsAttDomain.rng:2.0">
 </include>
 </div>

4. They remove the reference to the @otherprops attribute from the props-attribute-
extension pattern:

 <div>
 <a:documentation>MODULE INCLUSIONS</a:documentation>
 ...
 <include href="urn:pubid:oasis:names:tc:dita:rng:otherpropsAttDomain.rng:2.0">
 <define name="props-attribute-extensions" combine="interleave">
 <empty/>
 </define>
 </include>

5. They ensure that the included-domains entity contains the @otherprops contribution to the
@specializations attribute:

 <div>
 <a:documentation>SPECIALIZATIONS ATTRIBUTE</a:documentation>
 <define name="specializations-att">
 <optional>
 <attribute name="specializations" a:defaultValue="
 @props/audience
 @props/deliveryTarget
 @props/otherprops
 @props/platform
 @props/product"/>
 </optional>
 </define>
 </div>

6. After checking the test topic to ensure that the attribute lists are modified as expected, the work is
done.

E.2.4 Example: Aggregating constraint and expansion modules using RNG
The DITA architect wants to add some extension modules to the document-type shell for topic. The
document-type shell already integrates a constraint module.

The following table lists the constraint module and the extension modules that the DITA architect wants to
integrate into the document-type shell for topic.

Type of element
configuration

File name What it does

Constraint topicSectionConstraint.rng Constrains <topic>:

• Removes <abstract>
• Makes <shortdesc> required
• Removes <related-links>
• Disallows topic nesting

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 440 of 471

Type of element
configuration

File name What it does

Constrains <section>:

• Makes @id required

Expansion sectionExpansionMod.rng Adds <sectionDesc> to the content model
of <section>

Expansion tableCellAttExpansion.rng Adds @cellPurpose to the attribute lists for
certain table elements

Because all of these element-configuration modules target elements declared in topicMod.rng, the
DITA architect needs to combine them into a single element-configuration module like the following:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="urn:pubid:oasis:names:tc:dita:rng:vocabularyModuleDesc.rng"
 schematypens="http://relaxng.org/ns/structure/1.0"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:dita="http://dita.oasis-open.org/architecture/2005/"
 xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <div>
 <a:documentation>CONTENT MODEL AND ATTRIBUTE LIST OVERRIDES</a:documentation>
 <include href="urn:pubid:oasis:names:tc:dita:rng:topicMod.rng:2.0">
 <!-- Redefines attribute list for section: Makes @id required -->
 <define name="section.attributes">
 <attribute name="id">
 <data type="ID"/>
 </attribute>
 <ref name="conref-atts"/>
 <ref name="select-atts"/>
 <ref name="localization-atts"/>
 <optional>
 <attribute name="outputclass"/>
 </optional>
 </define>
 <!-- Adds sectionDesc to the content model of section -->
 <define name="section.content">
 <optional>
 <ref name="title"/>
 </optional>
 <optional>
 <ref name="sectionDesc"/>
 </optional>
 <zeroOrMore>
 <ref name="section.cnt"/>
 </zeroOrMore>
 </define>
 <!-- Adds @cellPurpose to certain table and simple table elements -->
 <define name="colspec.attributes" combine="interleave">
 <optional>
 <attribute name="cellPurpose"/>
 </optional>
 </define>
 <define name="entry.attributes" combine="interleave">
 <optional>
 <attribute name="cellPurpose"/>
 </optional>
 </define>
 <define name="row.attributes" combine="interleave">
 <optional>
 <attribute name="cellPurpose"/>
 </optional>
 </define>
 <define name="stentry.attributes" combine="interleave">
 <optional>
 <attribute name="cellPurpose"/>
 </optional>

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 441 of 471

 </define>
 <define name="strow.attributes" combine="interleave">
 <optional>
 <attribute name="cellPurpose"/>
 </optional>
 </define>
 <!-- Redefines topic: removes abstract and related-links; makes shortdesc -->
 <!-- required; disallows topic nesting -->
 <define name="topic.content">
 <ref name="title"/>
 <ref name="shortdesc"/>
 <optional>
 <ref name="prolog"/>
 </optional>
 <optional>
 <ref name="body"/>
 </optional>
 </define>
 </include>
 </div>
</grammar>

When the DITA architect edits the document-type shell to integrate the element configuration module,
they also need to do the following:

• Remove the include statement for topicMod.rng
• Add <section> to the "ID-DEFINING ELEMENT OVERRIDES" division

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 442 of 471

F Element-by-element recommendations for
translators
This topic contains a list of all elements in the base DITA edition. It includes recommendations on how to
present the element type to translators, whether the element contents are likely to be suitable for
translation, and whether the element has attributes with values that are likely to be suitable for translation.
Examples of content that is not suitable for translation include code fragments and mailing addresses.

Notes on the tables below
• Note that an element might be a block element in one context and an inline element in another. In

addition, specialized element types might be rendered in a way that varies from their
specialization base. Accordingly, the distinctions presented in the tables are provided only as a
guide to known behavior with the base DITA. For element specializations that are not distributed
by OASIS, the suggested default is to fall back to the closest ancestor element that is part of the
OASIS distribution.

• For all elements, the @translate attribute overrides the suggested defaults specified in the
tables below.

• Certain block-level elements might appear in the middle of a translation segment. They are
considered subflow elements in regard to translation. When located in the middle of a translation
segment, these element should not be translated as part of that segment. Whenever possible,
such elements should be placed only at sentence boundaries in order to aid translation. The
subflow elements in base DITA are <draft-comment>, <fn>, <idex-see>, <index-see-
also>, <indexterm>, and <required-cleanup>

• The <keyword> element (as well as specializations of <keyword>) is an inline, phrase-like
element when it appears in the body of a document. It can also appear in the <keywords>
element in <topicmeta> (for maps) or in the <prolog> (for topic). When it appears in the
<keywords> element, each <keyword> represents an individual segment. In that location,
<keyword> is considered a subflow element.

Explanation of column headers
The following list explains the headers for the columns:

Element name
The name of the element.

Specialization base
The element from which the current element is specialized. This column only appears in tables for
the domain elements.

Same behavior as specialization base?
Indicates whether the element has the same behaviors in regard to translation as its specialization
base. The behaviors are whether the element is formatted as a single block or as an inline element,
whether the element represents a complete translatable segment, and whether the element contains
translatable content. This column only appears in tables for the domain elements.

Block/inline translation
Specifies whether the element represents a complete translatable segment. The value "block"
indicates that the element is a single segment, while the value "inline" indicates that the element is
part of a larger segment.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 443 of 471

Translatable content?
Whether the element contains one or both of the following:

• Text content that can be translated
• Child elements that contain content that can be translated

Notes
This column contains any additional information, including the following items.This column only
appears in tables when it is needed.

• Whether the element has any attributes with values that might need translation
• If specializations of the element might need translation,
• If the element is a "subflow" element for the purposes of translation

Topic elements
The following table contains information about elements that are available within topics. Some elements
are also available in DITA maps.

Element name Block/inline
(translation)

Translatable
content?

Notes

<abstract> block yes

<alt> block yes This element is considered a subflow (443)
element.

<audience> block yes

<audio> block yes

<author> block yes

<body> block yes

<bodydiv> block yes

<brand> block yes

<category> block yes

<cite> inline yes

<colspec> n/a (empty) n/a (empty)

<component> block yes

<copyrholder> block yes

<copyright> block yes

<copyryear> block yes

<created> block yes

<critdates> block yes

<data> block no Specializations of <data> might contain
translatable content.

<dd> block yes

<ddhd> block yes

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 444 of 471

Element name Block/inline
(translation)

Translatable
content?

Notes

<desc> block yes

<div> block yes

<dl> block yes

<dlentry> block yes

<dlhead> block yes

<draft-comment> block no This element is considered a subflow (443)
element.

<dt> block yes

<dthd> block yes

<entry> block yes

<example> block yes

<fallback> block yes

<featnum> block yes

<fig> block yes

<figgroup> block yes

<fn> block yes This element is considered a subflow (443)
element.

<foreign> block yes The block vs. inline designation for the
<foreign> element is likely to change for
some specializations.

The <foreign> element might contain
DITA elements, such

<desc>, <object>, and <image>, in
addition to non-DITA elements. Such
elements can contain translatable content;
they provide an alternative display if the
foreign content cannot be processed.

<image> block when
@placement=
break, otherwise
inline

yes

<include> inline yes

<index-see> block yes This element is considered a subflow (443)
element.

<index-see-also> block yes This element is considered a subflow (443)
element.

<indexterm> block yes This element is considered a subflow (443)
element.

<keytext> block yes

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 445 of 471

Element name Block/inline
(translation)

Translatable
content?

Notes

<keyword> inline (except when
within <keywords>
– see note above
the table)

yes

<keywords> block yes

 block yes

<lines> block yes

<link> block yes

<linkinfo> block yes

<linklist> block yes

<linkpool> block yes

<linktext> block yes

<lq> block yes @reftitle can specify translatable
content.

<media-source> block n/a

<media-track> block n/a

<metadata> block yes

<no-topic-nesting> n/a (empty) n/a (empty)

<note> block yes @othertype can specify translatable
content.

<object> block yes

 block yes

<othermeta> block yes @content can specify translatable
content.

<p> block yes

<param> block n/a

<permissions> block yes

<ph> inline yes

<platform> block yes

<pre> block yes

<prodinfo> block yes

<prodname> block yes

<prognum> block yes

<prolog> block yes

<publisher> block yes

<q> inline yes

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 446 of 471

Element name Block/inline
(translation)

Translatable
content?

Notes

<related-links> block yes

<required-cleanup> block no This element is considered a subflow (443)
element.

<resourceid> block yes

<revised> block yes

<row> block yes

<section> block yes

<series> block yes

<shortdesc> block yes

<simpletable> block yes

<sl> block yes

<sli> block yes

<source> block yes

<stentry> block yes

<sthead> block yes

<strow> block yes

<table> block yes

<tbody> block yes

<term> inline yes

<text> inline yes

<tgroup> block yes

<thead> block yes

<title> block yes

<titlealt> block yes

<tm> inline yes

<topic> block yes

 block yes

<video> block yes

<vrm> block yes

<vrmlist> block yes

<xref> inline yes

Comment by Kristen J Eberlein on 11 October 2022

We need to consider how we want to handle <image> and <hazardsymbol> (specialized from
<image>). The current wording in the tables in awkward.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 447 of 471

Also, Eliot pointed out the following in the Content Fusion review: "<image> is not a block for
translation purposes, it is a container -- only the <alt> element within <image> contains translatable
text. Localization of the image would be separate."

Disposition: Unassigned

Map elements
The following table contains information about the elements that are defined in the map module.

Element name Block/inline (translation) Translatable content?

<map> block yes

<navref> n/a (empty) n/a (empty)

<relcell> block yes

<relcolspec> block yes

<relheader> block yes

<relrow> block yes

<reltable> block yes

<shortdesc> block yes

<topicmeta> block yes

<topicref> block yes

<ux-window> n/a (empty) n/a (empty)

Alternative title domain elements (alternativetitles-d)
There are no translatable attributes or other special considerations for elements in this domain. With the
exception of the <subtitle> element, all elements represent metadata.

Element name Specialization base Same behavior as
specialization base?

Block/inline
(translation)

Translatable
content?

<linktitle> <titlealt> yes block yes

<navtitle> <titlealt> yes block yes

<searchtitle> <titlealt> yes block yes

<subtitle> <titlealt> yes block yes

<titlehint> <titlealt> yes block yes

Emphasis domain elements (emphasis-d)
There are no translatable attributes or other special considerations for elements in this domain.

Element name Specialization base Same behavior as
specialization base?

Block/inline
(translation)

Translatable
content?

 <ph> yes inline yes

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 448 of 471

Element name Specialization base Same behavior as
specialization base?

Block/inline
(translation)

Translatable
content?

 <ph> yes inline yes

Hazard statement domain elements (hazard-d)
There are no translatable attributes or other special considerations for elements in this domain.

Element name Specialization base Same behavior as
specialization base?

Block/inline
(translation)

Translatable
content?

<consequence> <div> yes block yes

<hazardstatement> <note> yes block yes

<hazardsymbol> <image> yes block when
@placement= break,
otherwise inline

yes

<howtoavoid> <div> yes block yes

<messagepanel> <div> yes block yes

<typeofhazard> <div> yes block yes

Highlight domain elements (hi-d)
There are no translatable attributes or other special considerations for elements in this domain.

Element name Specialization base Same behavior as
specialization base?

Block/inline
(translation)

Translatable
content?

 <ph> yes inline yes

<line-through> <ph> yes inline yes

<i> <ph> yes inline yes

<overline> <ph> yes inline yes

<sub> <ph> yes inline yes

<sup> <ph> yes inline yes

<tt> <ph> yes inline yes

<u> <ph> yes inline yes

Utilities domain elements (ut-d)
There are no translatable attributes for elements in this domain.

Element name Specialization
base

Same behavior as
specialization
base?

Block/inline
(translation)

Translatable
content?

Notes

<area> <figgroup> yes block yes

<coords> <ph> no inline no

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 449 of 471

Element name Specialization
base

Same behavior as
specialization
base?

Block/inline
(translation)

Translatable
content?

Notes

<imagemap> <fig> yes block yes This element can
contain translatable
alternate text.

<shape> <keyword> no inline no

<sort-as> <data> no block yes This element is
considered a
subflow (443)
element.

DITAVALref domain elements (ditavalref-d)

Element name Specialization base Same behavior as
specialization base?

Block/inline
(translation)

Translatable
content?

<ditavalmeta> <topicmeta> yes block yes

<ditavalref> <topicref> yes block yes

<dvrKeyscopePrefix> <data> yes block no

<dvrKeyscopeSuffix> <data> yes block no

<dvrResourcePrefix> <data> yes block no

<dvrResourceSuffix> <data> yes block no

Map group domain elements (mapgroup-d)
There are no translatable attributes or other special considerations for elements in this domain.

Element name Specialization base Same behavior as
specialization base?

Block/inline
(translation)

Translatable
content?

<keydef> <topicref> yes block yes

<mapref> <topicref> yes block yes

<mapresources> <topicref> yes block yes

<topicgroup> <topicref> yes block yes

<topichead> <topicref> yes block yes

DITAVAL elements
There are no translatable attributes in the DITAVAL element set. The only element that directly contains
translatable text is <alt-text>.

Element name Block/inline (translation) Translatable content?

<alt-text> block yes

<endflag> block yes

<prop> block yes

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 450 of 471

Element name Block/inline (translation) Translatable content?

<revprop> block yes

<startflag> block yes

<style-conflict> n/a (empty) n/a (empty element)

<val> block yes

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 451 of 471

G Formatting expectations
DITA is a standard that supports the creation of human-readable content. Accordingly, DITA defines
fundamental document components. Since there is a reasonable expectation that such document
components be rendered consistently, we suggest the following formatting conventions.

Table 2: Formatting expectations for DITA elements

Element Suggested formatting

<dd> See <dl>.

<dlhead> See <dl>.

<dt> See <dl>.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 452 of 471

H Migrating to DITA 2.0
This section contains information about the changes between DITA 1.3 and DITA 2.0. It also contains tips
about migrating DITA source and grammar files to DITA 2.0, including information about applications and
other resources that DITA architects might find helpful.

H.1 Changes from DITA 1.3 to DITA 2.0

H.2 Information about migrating to DITA 2.0

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 453 of 471

I OASIS grammar files
This section provides information about the grammar files that are provided in the DITA base edition.

I.1 File names in the base DITA edition
The OASIS DITA Technical Committee uses certain conventions for the names of XML grammar files. We
suggest using these conventions as a way to facilitate the interchange of grammar files.

DTD-based specialization modules
The DITA Technical Committee uses certain file-naming conventions for DTD-based specialization
modules. While the grammar files shipped with DITA 2.0 do not include domain constraint or expansion
modules, we suggest conventions for those modules also.

Module type File name Example

Structural moduleName.mod topic.mod
Element domain domainNameDomain.ext highlightDomain.ent

highlightDomain.mod

Attribute domain attriNameAttDomain.ent deliveryTargetAttDomain.ent
Constraint qualifierTargetConstraint.mod strictTaskbodyConstraint.mod

acmeHighlightDomainConstraint.mod

Expansion acme-SectionExpansion.mod
acme-CellPurposeAttExpansion.ent
acme-otherpropsAttExpansion.mod
example-dlentryModeAttExpansion.ent

Comment by Kristen J Eberlein on 19 September 2022

The names of the expansion modules listed in the "Example" column are taken from the example
topics. They do not follow a consistent pattern. I suspect that the same is true for file names used in
the constraint example topics.

Disposition: Unassigned

where:

• moduleName is the name of the element type, such as "topic" or "map".
• domainName is the short name of the domain, for example, "highlight" or "utilities".
• attrName is the name of the specialized attribute, for example, "deliveryTarget".
• ext is the file extension, for example, "ent" or "mod".
• qualifier is a string that is specific to the constraints module and characterizes it, for example,

"strict" or "requiredTitle" or "myCompany-".
• Target is the target of the constraint with an initial capital, for example, "Topic" or

"HighlightDomain".

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 454 of 471

RELAX NG-based specialization modules
The DITA Technical Committee uses certain file-naming conventions for RNG-based specialization
modules. While the grammar files shipped with DITA 2.0 do not include domain constraint or expansion
modules, we suggest conventions for those modules also.

Module type File name Example

Structural moduleNameMod.rng conceptMod.rng
Element domain domainNameDomainMod.rng highlightDomainMod.rng
Attribute domain attrNameAttDomain.rng deliveryTargetAttDomain.rng
Constraint qualifierTargetConstraintMod.

rng
strictTaskbodyConstraintMod.rng
acmeHighlightDomainConstraintMod.rng

Expansion sectionExpansionMod.rng
cellPurposeAtt.rng
acme-otherpropsAttExpansion.rng
tableCellAttExpansion.rng

Comment by Kristen J Eberlein on 19 September 2022

The names of the expansion modules listed in the "Example" column are taken from the example
topics. They do not follow a consistent pattern. I suspect that the same is true for file names used in
the constraint example topics.

Also, is including "Mod" in element-domain or constraint files something we really want to do, or was it
necessary for the RNG-to-DITA/XSD converter?

Disposition: Unassigned

where:

• moduleName is the name of the element type, such as "topic" or "map".
• domainName is the short name of the domain, for example, "highlight" or "utilities".
• attrName is the name of the specialized attribute, for example, "deliveryTarget".
• qualifier is a string that is specific to the constraints module and characterizes it, for example,

"strict" or "requiredTitle" or "myCompany-".
• Target is the target of the constraint with an initial capital, for example, "Topic" or

"HighlightDomain".

I.2 Globally-unique identifiers in the base DITA edition
Each DITA grammar file has a globally-unique identifier. This identifier can reference either the latest
version or a specific version of the grammar file.

Each of the following grammar files has globally-unique identifier:

• Document-type shell
• Structural vocabulary module
• Element- or attribute domain module
• Element-configuration module (constraint or expansion)

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 455 of 471

DTD-based grammar files
The public identifiers for the DTD files that are maintained by OASIS use the following format:

"-//OASIS//DTD DITA version information-type//EN"

where:

• version either is the specific version number (for example, 2.0) or 2.x, which represents the most
recent version of DITA 2.x. Omitting the version number entirely is also equivalent to the most
recent version of DITA 2.x.

• information-type is the name of the topic or map type, for example, Base Topic.

Note that "OASIS" is the owner identifier; this indicates that the artifacts are owned by OASIS. The
keyword "DITA" is a convention that indicates that the artifact is DITA-related.

RNG-based grammar files
The URNs for the RNG files that are maintained by OASIS use the following format:

"urn:pubid:oasis:names:tc:dita:rng:information-type.rng:version"

where:

• version either is the specific version number (for example, 2.0) or 2.x, which represents the most
recent version of DITA 2.x. Omitting the version number entirely is also equivalent to the most
recent version of DITA 2.x.

• information-type is the name of the topic or map type, for example, basetopic

Note that "oasis" is the owner identifier; this indicates that the artifacts are owned by OASIS. The keyword
"dita" is a convention that indicates that the artifact is DITA-related.

I.3 Domains provided in the base DITA edition
The base DITA edition includes a set of attribute- and element-domain specializations. The attribute
domains are available for use in both maps and topics, while the element domains vary as to where they
can be made available.

Attribute-specialization domains
The following table lists the attribute specializations that are included in the base DITA edition.

Domain Description

@audience Attribute for conditional processing based on target audience

@deliveryTarget Attribute for conditional processing based on target delivery mechanism

@otherprops Attribute for conditional processing when an appropriate semantic is not developed

@platform Attribute for conditional processing based on platform

@product Attribute for conditional processing based on product

Element-domain specializations
The following table lists the element-domain specializations that are included in the base DITA edition.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 456 of 471

Domain Purpose Where
available

Short name

Alternative titles Provides alternative titles for resources Map & topic alternativeTitles-d

DITAVALref Enables filtering a branch of a DITA map Map ditavalref-d

Emphasis Provides and elements for
indicating emphasis

Map & topic emphasis-d

Hazard statement Provides a hazard statement element that
meets meets ANSI Z535 and ISO 3864
requirements

Map & topic hazard-d

Highlighting Provides typographic elements Map & topic hi-d

Map group Provides convenience elements for use in DITA
maps

Map mapgroup-d

Utilities Provides image maps and a sort key Map & topic ut-d

I.4 Document-type shells provided in the base DITA edition
The DITA specification contains a starter set of document-type shells. These document-type shells are
commented and can be used as templates for creating custom document-type shells.

The following table lists the document-type shells that are included in the base DITA edition and the
domains that are integrated into them.

Document-type
shell

Domains included Domains NOT included

Base map All attribute domains

The following element domains:

• Alternative titles
• DITAVAL reference
• Emphasis
• Hazard statement
• Highlighting
• Map group
• Utilities

 Not applicable

Base topic All attribute domains and the following
element domains:

• Alternative titles
• Emphasis
• Hazard statement
• Highlighting
• Utilities

The following element domains:

• DITAVAL reference
• Map group

Subject scheme All attribute domains

The following element domains:

• Alternative titles
• Emphasis
• Highlighting

The following element domains:

• DITAVAL reference
• Hazard statement
• Map group
• Utilities

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 457 of 471

J Processing interoperability considerations
The DITA specification does not require processors to perform filtering, content reference resolution, key
space construction, and other processing related to base DITA semantics in any particular order. This
means that different conforming DITA processors might produce different results for the same initial data
set and filtering conditions. DITA users and DITA implementers need to be aware of these potential
differences in behavior when DITA content will be processed by different processors.

In general, in any situation in which two elements interact during processing, applying filtering before or
after the processing is done can result in different results when either or both of the elements is
conditional.

For conditional elements, an element is "applicable" if it is filtered in and "inapplicable" if it is filtered out.

Filtering and content reference resolution
When two elements are merged as result of a content reference, the attributes of the two elements are
combined. By default, the attributes of the referencing element take precedence over the referenced
element. However, any attribute can specify the value "-dita-use-conref-target", which causes the
referenced element attribute to take precedence. This means that the effective value of filtering attributes
might reflect either the referencing element or the referenced element depending on how each attribute is
configured on the referencing element. This in turn means that, in certain cases, filtering before resolving
content references will produce a different result than when filtering is applied after resolving content
references.

In two cases, the order in which filtering is applied results in either an element being in the effective result
or an element not being in the effective result. There is a third case in which there will be either an empty
element (and unresolvable content reference) or no element.

In the case where a referenced element is not applicable and the referencing element is explicitly
applicable for the same condition (that is, both elements specify values for the same filtering attribute and
the referencing element is applicable), if content references are resolved before filtering, the content
reference is resolved and the effective value of the referencing element reflects the referenced element. If
content referencing is resolved after filtering, the referenced element is filtered out and the content
reference cannot be resolved, typically generating an error.

The same scenario results in different results for the case of conref push. An applicable, referencing
element can use conref push to replace another element that would otherwise be filtered out. If content
references are resolved before filtering, the content is pushed and the effective value of the referenced
element reflects the referencing element. If content referencing is resolved after filtering, the referenced
element will be filtered out and the content reference can no longer be resolved.

If the referencing element is not conditional and the referenced element is inapplicable, filtering applied
before content reference resolution results in an unresolvable content reference. If filtering is applied after
content resolution, the explicit condition on the referenced element becomes the effective value for that
condition following content resolution and the result is then filtered out. The difference in these two cases
is that in the first case the content reference cannot be resolved, resulting in a processing error and a
potentially nonsensical element if the referencing element has required subelements (for example, a
content reference from a topic to another topic, where the referencing topic must have a title subelement),
but in the second case the element is filtered completely out.

Different processing orders might also provide different results in the case where pushed content is
grouped in an element that is filtered out. If filtering is applied before content resolution, that entire block

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 458 of 471

of content (the grouping element and the content to be pushed) is filtered out before the content reference
is resolved. If filtering is applied after content resolution, the push action will be resolved first so that
content appears in the referenced location, after which the referencing element (along with its grouping
element) is filtered from the original source location.

Filtering and key space resolution
See Keys and conditional processing (110) for a discussion of effective key definitions and conditional
processing.

As an implementation detail for key-space-constructing processors, if filtering is applied before
constructing the key space, then the set of effective key definitions is simply the first definition of each
unique key name. However, if filtering is applied after key space construction, and in particular, if a
processor needs to allow dynamic resolution of keys based on different filtering specifications applied to
the same constructed key space, then the set of effective key definitions is the first definition of each pair
of unique key name and unique selection specification set. This second form of constructed key space
would be needed by processors such as editors and content management systems that need to quickly
provide different filtering-specific key bindings without reconstructing the entire key space for each new
set of filtering conditions.

For example, given a map that contains two definitions for the key "topic-01", one with an @audience
value of "expert" and one with an @audience value of "novice", a filter-first processor would only have at
most one effective key definition for the key name "topic-01", whichever of the two definitions was filtered
in by the active filter specification and was the first definition encountered (if both happen to be filtered in).
In a processor that supports dynamic key definition filtering, there would be two effective definitions for
the key name "topic-01", one for @audience of "expert" and one for @audience of "novice". The
processor would also need to maintain knowledge of the definition order of the two key definitions in order
to correctly handle the case when both "expert" and "novice" are applicable for a given key access
request (in which case, whichever of the two definitions was first would be used as the effective value of
the key).

Link resolution
If a cross reference, link, or other linking element is resolved to its target before filtering and the target is
subsequently filtered out, the link would be to a non-existent target but might reflect properties of the
target (for example, a cross reference link text might reflect the target title). If the link is resolved after
filtering is applied and the target is filtered out, the link is to a non-existent target, which will result in a
different link text. The rendition effect for the navigation link is the same: the link cannot be navigated
because the target does not exist in the rendered result.

Topicref resolution
Resolution of <topicref> elements before filtering can result in use of topic-provided navigation titles or
metadata that would not be used if the target topic was filtered out before resolution. In both cases, the
topicref as rendered would be to a missing topic.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 459 of 471

K Revision history
The following table contains information about revisions to this document.

Revision Date Editor Description of changes

01 10 May 2019 Kristen James Eberlein Generated working draft #01. Contains
updated TOC that reduces level of topic
nesting.

02 17 May 2019 Kristen James Eberlein Generated working draft #02. Contains
reworked markup and styling for RFC-2119
statements.

03 24 May 2019 Kristen James Eberlein Generated working draft #03. Contains a
non-normative appendix of all conformance
statements (generated with prototype
code).

04 03 June 2019 Kristen James Eberlein Generated working draft #04.

Draft comments in "Attribute generalization"
and "<lines>" topics resolved per TC call
on 28 May 2019.

TOC reorganized to move purely illustrative
content from "DITA markup" and into
"Overview of DITA".

05 05 July 2019 Kristen James Eberlein Generated working draft #05.

<topicgroup> and <topichead> topics
reworked per TC call on 02 July 2019.

Renamed "DITA markup" to "DITA
processing". Added "Chunking" content
and a new "DITA maps and their usage"
topic. The new topic contains a list of
material to cover.

06 15 July 2019 Kristen James Eberlein Generated working draft #06

Conditional processing applied to element
and attribute topics shared with LwDITA.
Attribute definitions listed in alphabetical
order. Attribute values tagged with
<keyword> and rendered styled with
quotation marks.

07 02 August 2019 Kristen James Eberlein Generated working draft #07.

Includes rework of indexing content

08 05 August 2019 Kristen James Eberlein Generated working draft #08.

Includes completed edits of multimedia
domain topics (based on DITAweb review
comments).

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 460 of 471

Revision Date Editor Description of changes

09 13 August 2019 Kristen James Eberlein Generated working draft #09.

Contains revised indexing content, based
on reviews by Robert Anderson, Stan
Doherty, Eliot Kimber, and Joyce Lam.

Added (as yet incomplete) "DITA attributes,
A to Z" topic.

10 20 August 20201 Kristen James Eberlein Generated working draft #10.

Includes additional edits to indexing
content, plus new placeholder topic about
effective attribute values.

11 27 August 2019 Kristen James Eberlein Generated working draft #11.

Includes fully implemented issue #253:
Remove indexing domain.

12 29 August 2020 Kristen James Eberlein Generated working draft #12.

Includes bug fixes, spelling corrections,
changes in organizational affiliation,
updates to acknowledgments, and
implementation of the following DITA 2.0
proposals:

• #29 Add <mapresources>
• #34 Remove <topicset> and

<topicsetref>
• #217 Remove @domains attribute
• #258: Add @outputclass to

DITAVAL
• #277: Change specialization base

of <imagemap>
• #278 Remove @lockmeta
• #292 Add attributes and <title>

to <simpletable>
• #297 Allow <example> in more

places

13 29 July 2022 Kristen James Eberlein Generated working draft # 28.
Implementation of #647, "Replace
classification domain with the
@subjectrefs attribute".

14 31 October 2022 Kristen James Eberlein Generated working draft #34. Includes:

• Content for 4.1.4.2 Example:
Alternate text for an image map
(40)

• Edited content for utilities domain
topics

15 30 January 2023 Kristen James Eberlein Generated working draft #35. Includes:

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 461 of 471

Revision Date Editor Description of changes

• Edited content for review T: Sorting
and utilities domain

• Content previously in the appendix
topic "Formatting conventions"
moved into "Rendering
expectations" sections in individual
element-reference topics

16 15 May 2024 Kristen James Eberlein Generated working draft #37. Included
updated content for "Specialization
elements".

17 26 August 2024 Kristen James Eberlein Generated working draft #38. Included draft
of updated indexing content.

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 462 of 471

Index

Special Characters
-dita-use-conref-target 151

A
<abstract>

short descriptions 206
accessibility

DITA markup 38
images 215, 225
tables 38

addressing mechanisms
effect on conref resolution 152
same-topic fragment identifier

authoring responsibility 152
effect on conref resolution 152

alternate text 215
alternative titles 213

<linktitle> 302
<navtitle> 303
overview 302
<searchtitle> 304

alternative titles domain
<linktitle> 302, 305
<navtitle> 303
<searchtitle> 304

attribute groups
architectural attributes 348
common map attributes 348
complex table attributes 348
data-element attributes 348
date attributes 348
display attributes 348
ID and conref attributes 348
inclusion attributes 348
link relationship attributes 348
localization attributes 348
metadata attributes 348
simple table attributes 348
universal 362
universal attributes 348

authoring recommendations
@dir 51
@xml:lang 48

B
base sort phrase 179
best practices

@dir 51
document-type shells 182
specialization 185

best practices (continued)
@xml:lang 48

bidirectional text 50
binding controlled values 61
body elements 215
branch filtering 165–167

examples 307

C
@cascade attribute

example 31
cascading

definition 69
map-to-map

attributes 73
exceptions 53
metadata elements 74

cascading metadata
example

cascade attribute 76
cascading attributes between maps 75
cascading elements 74
cascading elements between maps 75

examples 74
chunking

attributes 77
examples

combining a map branch 80
combining all documents 79
combining documents within a split context 90
combining groups of documents 82
combining nested documents 83
effects on link resolution 90
ignoring 89
overview 78
splitting documents 85
splitting documents with nested topics 87

normative statements 77
overview 77
processing 78

citations 216
@class attribute

examples 188
generalization 193
rules and syntax 188

classifying content 60
coding requirements

DTD
attribute-domain modules 406
document-type shells 397
element-domain modules 405
element-type declarations 401
entities, use of 396

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 463 of 471

coding requirements (continued)
DTD (continued)

overview 396
structural modules 404

RNG
attribute-domain modules 416
document-type shells 409
element-domain modules 416
overview 408
structural modules 414

collation 179
common attributes 367
conditional processing

subset of a map 307
conref

combining attributes 151
overview 139
processing expectations 150
pull 139
push 139
range 139
validity of 150
xrefs and conref within a conref 152

conref and @xml:lang
example 49
processing expectations 48

conref attributes
@conaction 140
@conkeyref 148
@conref 148
@conrefend 144
values, "-dita-use-conref-target" 149

constraints
design and implementation rules 197
examples

applying multiple constraints 424, 427
redefining the content model 420, 424
replacing base element with domain extensions
423, 427
restricting attributes for an element 421, 425
restricting content model for a domain 423, 426

overview 196
processing and interoperability 198

content references, See conref
context-sensitive help 273
controlled values

binding 276
binding to attributes 61
classifying content for flagging and filtering 60
definition of 60
overview 60
precedence rules 61
validation of 61, 62

convenience elements
<keydef> 325
map group domain 325
<mapref> 326

convenience elements (continued)
<mapresources> 328

core concepts
addressing 23
conditional processing 23
configuration 23
constraints 23
content reuse 23
information typing 23
maps 23
specialization 23
topics 23

cross-references 242
resolving within conrefs 152

D
definition lists

description 216
entries 218
headings 219

definition columns 216
term columns 220

overview 218
terms 220

definitions
attribute domain modules 187
base sort phrase 179
cascading 69
controlled values 60
element domain modules 187
structural modules 187

@deliveryTarget
defining values for 61

descriptions 216
design and implementation rules

attribute types 188
document-type shells 184
element types 187
expansion modules 199

@dir
best practices 51
overview 50
recommended usage 51

DITA maps, See maps
DITAVAL

elements
<alt-text> 338
<endflag> 338
<prop> 339
<revprop> 342
<startflag> 344
<style-conflict> 345
<val> 346

processing expectations 62
DITAVAL reference domain 307

<ditavalmeta> 309

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 464 of 471

DITAVAL reference domain (continued)
<ditavalref> 307
<dvrKeyscopePrefix> 313
<dvrKeyscopeSuffix> 314
<dvrResourcePrefix> 310
<dvrResourceSuffix> 311

divisions 217
document-type shells

conformance 185
DTD

parameter entities 397
sections, patterns of 397

equivalence 184
overview 182
public identifiers 184
RNG

sections, patterns of 409
rules 184

domains
alternative titles 302
DITAVAL reference 307
emphasis 314
hazard statement 315
highlighting 321
mapgroup 325
utilities 330

draft comments 219
DTD

coding requirements
attribute-domain modules 406
document-type shells 397
element-domain modules 405
element-type declarations 401
entities, use of 396
overview 396
structural modules 404

parameter entities, use of 397

E
effective sort phrase 179
element groups

basic map 263
body 215
DITAVAL 338
indexing 249
legacy conversion 337
prolog 285
related links 252
specialization 298
subject scheme 276
table 255

elements
basic map

<keytext> 263
<map> 264
<navref> 266

elements (continued)
basic map (continued)

<relcell> 266
<relcolspec> 267
<relheader> 269
<relrow> 269
<reltable> 269
<topicmeta> 272
<topicref> 272
<ux-window> 273

body
<alt> 215
<cite> 216
<dd> 216
<ddhd> 216
<desc> 216
<div> 217
<dl> 218
<dlentry> 218
<dlhead> 219
<draft-comment> 219
<dt> 220
<dthd> 220
<example> 220
<fallback> 221
<fig> 221
<figgroup> 222
<fn> 222
<image> 225
<include> 226
<keyword> 228
 229
<lines> 229
<longdescref> 230
<lq> 230
<note> 231
<object> 232
 235
<p> 235
<param> 235
<ph> 236
<pre> 237
<q> 237
<section> 238
<sl> 239
<sli> 239
<term> 239
<text> 240
<tm> 241
 241
<xref> 242

DITAVAL
<alt-text> 338
<endflag> 338

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 465 of 471

elements (continued)
DITAVAL (continued)

<prop> 339
<revprop> 342
<startflag> 344
<style-conflict> 345
<val> 346

indexing
<index-see> 249
<index-see-also> 250
<indexterm> 250

legacy conversion
<required-cleanup> 337

prolog
<audience> 285
<author> 285
<brand> 296
<category> 286
<component> 297
<copyrholder> 289
<copyright> 289
<copyryear> 290
<created> 290
<critdates> 290
<featnum> 297
<keywords> 286
<metadata> 291
<othermeta> 287
<permissions> 291
<platform> 297
<prodinfo> 287
<prodname> 289
<prognum> 289
<prolog> 209
<publisher> 288
<resourceid> 292
<revised> 295
<series> 297
<source> 296
<vrm> 298
<vrmlist> 298

subject scheme, See
emphasis domain

 314
 315

entities, role in DTDs 396
examples

cascading metadata
cascade attribute 76
cascading attributes between maps 75
cascading elements 74
cascading elements between maps 75
overview 74

chunking
combining a map branch 80

examples (continued)
chunking (continued)

combining all documents 79
combining documents within a split context 90
combining groups of documents 82
combining nested documents 83
effects on link resolution 90
ignoring 89
overview 78
splitting documents 85
splitting documents with nested topics 87

@class attribute 188
conref and @xml:lang 49
constraints

applying multiple constraints 424, 427
redefining the content model 420, 424
replacing base element with domain extensions
423, 427
restricting attributes for an element 421, 425
restricting content model for a domain 423, 426

document-type shells
public identifiers 184

DTD
parameter entities for domain extensions 405

effective sort phrase 179
expansion modules

aggregating constraint and expansion modules
435
expanding attributes for an element 432, 433,
437, 439
expanding content model of <section> 430,
435

generalization
attribute types 195
element types 193

@href syntax 95
maps

audience definition 272
@collection-type and @linking in
relationship tables 31
relationship tables 31
use of @cascade attribute 31

processing
filtering or flagging a hierarchy 62, 64
xrefs and conref within a conref 152

related links 252
relationship tables 267, 269
RNG

domain extension patterns 416
specialization

<context> and <prereq> 185
including non-DITA content 191
reuse of elements from non-ancestor
specializations 192

@specializations attribute 190
subject scheme maps

binding controlled values 61

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 466 of 471

examples (continued)
subject scheme maps (continued)

defining taxonomic subjects 64
defining values for @deliveryTarget 67
filtering or flagging a hierarchy 62, 64
providing a subject-definition resource 60

expansion modules
design and implementation rules 199
examples

aggregating constraint and expansion modules
435
expanding attributes for an element 432, 433,
437, 439
expanding content model of <section> 430,
435

overview 198

F
figures 221
file extensions

conditional processing profiles 22
DITAVAL 22
maps 22
topics 22

filtering 338
filtering and flagging

classifying content for 60
processing expectations 62

flagging 338, 342
alternate text 338

footnotes 222
foreign vocabularies, including 300
@format

overview 94
processing expectations 94
undefined processing behavior 94
values 94

G
generalization

@class and @specializations attributes 193
conref resolution 150
examples

attribute types 195
element types 193

overview 193
processing expectations 194
syntax 195

grouping 179
grouping elements

<bodydiv> 208
<div> 217
<figgroup> 222
<topicgroup> 329

H
hazard statement domain 315

<consequence> 316
<hazardstatement> 316
<hazardsymbol> 318
<howtoavoid> 319
<messagepanel> 320
<typeofhazard> 320

highlighting domain
 321
<i> 321
<line-through> 322
<overline> 322
<sub> 323
<sup> 323
<tt> 324
<u> 324

@href
overview 95
processing expectations 95
syntax examples 95

I
illustrations

document-type shell 182
images

accessibility 215
alternate text 225
long descriptions 230
overview 225
placement 225
size 225

imposing map role 53
indexes

elements 135
location of index elements 135
locators 136
ranges 136
redirections 136
see also reference 135
see reference 135
terminology 135

information typing
benefits 27
history 27
overview 27

interoperability
constraints 198

K
key reference

conref resolution, effect on 152
key reference attributes

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 467 of 471

key reference attributes (continued)
@keyref 103
@keys 102
@keyscope 105

key scopes
conref resolution, effect on 152

keys
definition

examples 325

L
legacy conversion elements

<required-cleanup> 337
link previews

multiple <shortdesc> within 206
linking attributes

@format 94
@href 95
@scope 96
@type 97

links
cross-references 242
examples 252
labels 254

lists
definition

definition columns 216
description 216
entries 218
headings 219
overview 218
term columns 220
terms 220

ordered
list items 229
overview 235

simple
list items 239
overview 239

unordered
list items 229
overview 241

localization
DITA markup 47
@translate 51
@xml:lang 48

M
map-to-map cascading

attributes 73
exceptions 53
metadata elements 74

map-to-map references 53
mapgroup domain

<keydef> 325

mapgroup domain (continued)
<mapref> 326
<mapresources> 328
<topicgroup> 329
<topichead> 329

maps
attributes

shared with topics 31
unique to maps 31

examples 264
audience definition 272
key definition 325
relationship tables 31, 267, 269

metadata 272
overview 30, 264
purposes 31
short descriptions in 211

messages issued by processors
<navtitle> within <topicgroup> 329
<topichead> with no navigation title 329

metadata
cascading 35
elements 35
maps 272

modularization
overview 186

multimedia elements 243
<audio> 243
<media-source> 244
<media-track> 245
<video> 246
<video-poster> 248

N
naming conventions

attribute domain modules 187
document-type shells

parameter entities 397
DTD

parameter entity for element domains 405, 406
element domain modules 187
RNG

parameter entity for element domains 416
pattern for element domains 416

structural modules 187
navigation title

definition 303
nested topics 25, 28
non-normative references 12
normative

references 11
normative statements

chunking 77
<desc> 216
<draft-comment> 219
<fn> 222

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 468 of 471

normative statements (continued)
@image 225
<include> 226
<object> 232
<pre> 237
<q> 237
<title> in <section> 238

O
objects

long descriptions 230
overview 232
parameters 235

ordered lists
list items 229
overview 235

P
paragraphs 235
phrases 236
precedence rules

combining attributes on conrefs 151
controlled values 61

preformatted text 237
processing

chunk attributes 78
conrefs 150, 151
controlled values 62
examples

filtering or flagging a hierarchy 62, 64
xrefs and conref within a conref 152

sorting 179
xrefs and conref within a conref 152

processing expectations
<abstract> 206
attribute values, hierarchies of 62
base sort phrase, documentation of 179
combining attributes on conrefs 151
conref and @xml:lang 48
conrefs, validity of 150
controlled values 60
DITAVAL 62
filtering and flagging 62
@format 94
formatting 24
generalization 194
generalization during conref resolution 150
@href 95
<include> 226
indexing

ranges 136
<keyword> 228
labels for related links 267
<link> 252

processing expectations (continued)
<linklist> 253
<linkpool> 254
<linktitle> 302
<navtitle> 303
parameters for referencing subject scheme maps 59
related links 210
@scope 96
<searchtitle> 304
short descriptions in maps 211
subject-definition resources 60
<subtitle> 305
<title> in a relationship table 212
<titlealt> 213
<titlehint> 306
@type 97
Unicode Bidirectional Algorithm, support for 51
validating controlled values 61
@xml:lang 48
xrefs and conref within a conref 152

prolog elements
<audience> 285
<author> 285
<brand> 296
<category> 286
<component> 297
<copyrholder> 289
<copyright> 289
<copyryear> 290
<created> 290
<critdates> 290
<featnum> 297
<keywords> 286
<metadata> 291
<othermeta> 287
<permissions> 291
<platform> 297
<prodinfo> 287
<prodname> 289
<prognum> 289
<prolog> 209
<publisher> 288
<resourceid> 292
<revised> 295
<series> 297
<source> 296
<vrm> 298
<vrmlist> 298

Q
quotations

long 230
short 237

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 469 of 471

R
recommended usage

@dir 51
@xml:lang 48

references
non-normative 12
normative 11

related links elements
<link> 252
<linkinfo> 253
<linklist> 253
<linkpool> 254
<linktext> 254

relationship tables
cells 266
column definitions 267
examples 31, 267, 269
headers 269
labels for related links 267
overview 269
processing expectations 267
rows 269
titles 212

rendering expectations
<desc> 216
<draft-comment> 219
<fn> 222
<hazardsymbol> 318
@image 225
link previews 211
<linklist> 253
<navtitle> within <topicgroup> 329
<object> 232
<pre> 237
<q> 237
related links 210
short descriptions 211
<title> in <section> 238
<topicgroup> 329

revisions 338
RFC 2119 terminology 11
RNG

coding requirements
attribute-domain modules 416
document-type shells 409
element-domain modules 416
overview 408
structural modules 414

S
same-topic fragment identifier

authoring responsibility 152
effect on conref resolution 152

@scope

@scope (continued)
overview 96
processing expectations 96
values 96

search titles 304
sections 238
short descriptions 211
simple lists

list items 239
overview 239

simple tables 257
single sourcing 24
sorting 179
specialization

benefits 186
best practices 27, 185
examples

<context> and <prereq> 185
including non-DITA content 191
reuse of elements from non-ancestor
specializations 192

including non-DITA content 191
modularization 186
overview 185
reuse of elements from non-ancestor specializations
192
rules

attribute types 188
element types 187

specialization elements
<data> 299
<foreign> 300
<no-topic-nesting> 301

@specializations attribute
examples 190
generalization 193
rules and syntax 190

specification
formatting in HTML5 version 14
link previews 14
navigation links 15

subject scheme
elements

<defaultSubject> 277
<elementdef> 278
<enumerationdef> 279
<schemeref> 281
<subjectdef> 281
<subjectHead> 282
<subjectHeadMeta> 283
<subjectScheme> 284

subject scheme maps
binding controlled values 61
defining controlled values 60
elements

<attributedef> 276
examples

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 470 of 471

subject scheme maps (continued)
examples (continued)

binding controlled values 61
defining values for @deliveryTarget 67
filtering or flagging a hierarchy 62, 64
providing a subject-definition resource 60

extending 60
overview 60

subject-definition resources 60
@subjectrefs

overview 63
subtitles 305

T
table elements

<colspec> 255
<entry> 256
<row> 257
<simpletable> 257
<stentry> 259
<sthead> 259
<strow> 260
<table> 260
<tbody> 262
<tgroup> 262
<thead> 262

tables
complex

body 262
cells 256
column specifications 255
group 262
headers 262
overview 260
rows 257

simple
cells 259
headers 259
overview 257
rows 260

terminology
attribute domain modules 187
cascading 69
element domain modules 187
indexing

see also reference 135
see reference 135

RFC 2119 11
structural module 187

title hints 306
titles 212
topic nesting

controlling 404, 414
disabling 404, 414

topics
benefits 26

topics (continued)
content 29
groups 329
information typing 27
overview 25
reuse 26
structure 28

trademarks 241
@translate

overview 51
translation

DITA markup 47
@translate 51
@xml:lang 48

@type
overview 97
processing expectations 97
values 97

U
undefined processing behavior

@format 94
Unicode Bidirectional Algorithm 50
universal attribute group 362
unordered lists

list items 229
overview 241

use by reference, See conref
user assistance 273
utilities domain

<area> 330
<coords> 331
<imagemap> 332
<shape> 334
<sort-as> 335

V
validating controlled values 61, 62
<video-poster> 248

X
@xml:lang

best practices 48
default value 47, 48
overview 47
processing expectations 48
recommended usage 48

xrefs, See

dita-2.0-specification 26 August 2024
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 471 of 471

	Table of contents
	1 Introduction
	1.1 Terminology
	1.2 References
	1.2.1 Normative references
	1.2.2 Informative references

	1.3 Normative versions of DITA grammar files
	1.4 Formatting conventions in the HTML5 version of the specification
	1.4.1 Link previews
	1.4.2 Navigation links

	1.5 About the specification source

	2 DITA terminology, notation, and conventions
	2.1 Normative and non-normative information
	2.2 Notation
	2.3 Basic DITA terminology
	2.4 Specialization terminology
	2.5 DITA module terminology
	2.6 Linking and addressing terminology
	2.7 Key terminology
	2.8 Map terminology
	2.9 Other terminology
	2.10 File extensions

	3 Overview of DITA
	3.1 Basic concepts
	3.2 Producing different deliverables from a single source
	3.3 DITA topics
	3.3.1 The topic as the basic unit of information
	3.3.2 The benefits of a topic-based architecture
	3.3.3 Disciplined, topic-oriented writing
	3.3.4 Information typing
	3.3.5 Topic structure
	3.3.6 Topic content

	3.4 DITA maps
	3.4.1 Definition of DITA maps
	3.4.2 Purpose of DITA maps
	3.4.3 DITA map attributes

	3.5 DITA metadata
	3.5.1 Metadata elements
	3.5.2 Metadata attributes
	3.5.3 Metadata in maps and topics
	3.5.4 Window metadata for user assistance

	4 Accessibility and translation
	4.1 Accessibility
	4.1.1 Handling accessibility in content and in processors
	4.1.2 Accessible content
	4.1.3 Accessible tables
	4.1.4 Examples of DITA markup for accessibility
	4.1.4.1 Example: Alternate text for an image
	4.1.4.2 Example: Alternate text for an image map
	4.1.4.3 Example: Fallback information for multimedia content
	4.1.4.4 Example: Simple table with accessibility markup
	4.1.4.5 Example: Complex table with accessibility markup
	4.1.4.6 Example: Complex table with some manually-specified accessibility markup
	4.1.4.7 Example: Complex table with manual accessibility markup

	4.2 Translation and localization
	4.2.1 The @xml:lang attribute
	4.2.1.1 Recommendations for the @xml:lang attribute
	4.2.1.2 Processing expectations regarding the @xml:lang attribute
	4.2.1.3 Example: content reference and the @xml:lang attribute

	4.2.2 The @dir attribute
	4.2.2.1 The Unicode Bidirectional Algorithm
	4.2.2.2 Recommended usage of the @dir attribute
	4.2.2.3 Processing expectations regarding the Unicode Bidirectional Algorithm

	4.2.3 The @translate attribute

	5 DITA map processing
	5.1 DITA maps and their usage
	5.1.1 Imposing roles when referencing a map
	5.1.1.1 Example: How <topicref> roles are imposed on referenced maps

	5.1.2 Examples of DITA maps
	5.1.2.1 Example: DITA map that references a subordinate map
	5.1.2.2 Example: DITA map with a simple relationship table
	5.1.2.3 Example: How the @collection-type and @linking attributes determine links

	5.2 Subject scheme maps and their usage
	5.2.1 Subject scheme maps
	5.2.2 Defining controlled values for attributes
	5.2.3 Binding controlled values to an attribute
	5.2.4 Processing controlled attribute values
	5.2.5 The @subjectrefs attribute
	5.2.6 Examples of subject scheme maps
	5.2.6.1 Example: a subject scheme map used to define taxonomic subjects
	5.2.6.2 Example: How hierarchies defined in a subject scheme map affect filtering
	5.2.6.3 Example: Defining values for @deliveryTarget

	5.3 Metadata cascading
	5.3.1 Cascading of metadata attributes in a DITA map
	5.3.1.1 Processing cascading attributes in a map
	5.3.1.2 Merging of cascading attributes

	5.3.2 Reconciling topic and map metadata elements
	5.3.3 Map-to-map cascading behaviors
	5.3.3.1 Cascading of attributes from map to map
	5.3.3.2 Cascading of metadata elements from map to map

	5.3.4 Examples of metadata cascading
	5.3.4.1 Example: How map-level metadata elements cascade to the referenced topics
	5.3.4.2 Example: How metadata elements cascade from one map to another
	5.3.4.3 Example: How attributes cascade from one map to another
	5.3.4.4 Example: How the @cascade attribute affects attribute cascading

	5.4 Chunking
	5.4.1 About the @chunk attribute
	5.4.2 Processing chunk="combine"
	5.4.3 Processing chunk="split"
	5.4.4 Using the @chunk attribute for other purposes
	5.4.5 Examples of the @chunk attribute
	5.4.5.1 Example: Using @chunk to combine all documents into one
	5.4.5.2 Example: Using @chunk to render a single document from one or more branches
	5.4.5.3 Example: Using @chunk to combine groups of topics
	5.4.5.4 Example: How chunk="combine" effects the map hierarchy
	5.4.5.5 Example: Using @chunk to split documents
	5.4.5.6 Example: How chunk="split" affects the map hierarchy
	5.4.5.7 Example: When @chunk is ignored
	5.4.5.8 Example: Using chunk="combine" when the root map specifies chunk="split"
	5.4.5.9 Example: Managing links when chunking

	6 DITA addressing
	6.1 @id attribute
	6.2 DITA linking
	6.2.1 The @format attribute
	6.2.2 The @href attribute
	6.2.3 The @scope attribute
	6.2.4 The @type attribute

	6.3 URI-based (direct) addressing
	6.4 Indirect key-based addressing
	6.4.1 Core concepts for working with keys
	6.4.2 Setting key names with the @keys attribute
	6.4.3 The @keyref attribute
	6.4.4 Using keys for addressing
	6.4.5 Key scopes
	6.4.6 The @keyscope attribute
	6.4.7 Addressing keys across scopes
	6.4.8 Cross-deliverable addressing and linking
	6.4.9 Processing key references
	6.4.10 Processing key references for navigation links and images
	6.4.11 Processing key references on <topicref> elements
	6.4.12 Processing key references to generate text or link text
	6.4.13 Examples of keys
	6.4.13.1 Examples: Key definition
	6.4.13.2 Examples: Key definitions for variable text
	6.4.13.3 Example: Duplicate key definitions within a single map
	6.4.13.4 Example: Duplicate key definitions across multiple maps
	6.4.13.5 Example: Key definition with key reference
	6.4.13.6 Example: Link redirection
	6.4.13.7 Example: Link modification or removal
	6.4.13.8 Example: Links from <term> or <keyword> elements
	6.4.13.9 Example: conref redirection
	6.4.13.10 Example: Keys and collaboration

	6.4.14 Examples of scoped keys
	6.4.14.1 Example: Scoped key definitions for variable text
	6.4.14.2 Example: References to scoped keys
	6.4.14.3 Example: Key definitions in nested key scopes
	6.4.14.4 Example: Key scopes and omnibus publications
	6.4.14.5 Example: How key scopes affect key precedence
	6.4.14.6 Example: How key scopes with the same name interact
	6.4.14.7 Example: @subjectrefs attribute with key scopes

	6.5 Context hooks for user assistance

	7 DITA processing
	7.1 Navigation
	7.1.1 Table of contents
	7.1.2 Alternative titles

	7.2 Indexes
	7.2.1 Index overview
	7.2.2 Index elements
	7.2.3 Location of <indexterm> elements
	7.2.4 Index locators
	7.2.5 Index redirection
	7.2.6 Index ranges
	7.2.7 Index sorting
	7.2.8 Examples of indexing
	7.2.8.1 Example: Index range defined in a single topic
	7.2.8.2 Example: Index range defined in a topic prolog
	7.2.8.3 Example: Index range defined in a map

	7.3 Content reference (conref)
	7.3.1 Conref overview
	7.3.2 The @conaction attribute
	7.3.3 The @conrefend attribute
	7.3.4 The @conkeyref attribute
	7.3.5 The @conref attribute
	7.3.6 Using the "-dita-use-conref-target" value
	7.3.7 Processing conrefs
	7.3.8 Processing attributes when resolving conrefs
	7.3.9 Processing xrefs and conrefs within a conref

	7.4 Conditional processing
	7.4.1 About conditional processing
	7.4.2 Expectations for conditional processing
	7.4.3 About the DITAVAL document
	7.4.4 Conditional processing attribute values
	7.4.5 Conditional processing attribute values with groups
	7.4.6 Conditional processing and subject schemes
	7.4.7 Filtering based on metadata attributes
	7.4.8 Flagging based on metadata attributes
	7.4.9 Examples of conditional processing
	7.4.9.1 Example: Setting conditional processing values
	7.4.9.2 Example: Simple DITAVAL document
	7.4.9.3 Example: Changing the default behavior to "exclude"
	7.4.9.4 Example: Flagging with @outputclass
	7.4.9.5 Example: Filtering based on groups
	7.4.9.6 Example: Filtering and flagging topic content
	7.4.9.7 Example: Simple DITAVAL document
	7.4.9.8 Example: DITAVAL with conditions for groups

	7.5 Branch filtering
	7.5.1 Overview of branch filtering
	7.5.2 How filtering rules interact
	7.5.3 Branch filtering: Single referenced DITAVAL document for a branch
	7.5.4 Branch filtering: Multiple referenced DITAVAL documents for a branch
	7.5.5 Branch filtering: Impact on resource and key names
	7.5.5.1 Using metadata elements in the DITAVAL reference domain
	7.5.5.2 Renaming based on multiple <ditavalref> elements
	7.5.5.3 Handling resource name conflicts caused by branch filtering

	7.5.6 Branch filtering: Implications of processing order
	7.5.7 Examples of branch filtering
	7.5.7.1 Example: Single <ditavalref> on a branch
	7.5.7.2 Example: Multiple <ditavalref> elements on a branch
	7.5.7.3 Example: Single <ditavalref> as a child of <map>
	7.5.7.4 Example: Single <ditavalref> in a reference to a map
	7.5.7.5 Example: Multiple <ditavalref> elements as children of <map> in a root map
	7.5.7.6 Example: Multiple <ditavalref> elements in a reference to a map
	7.5.7.7 Example: <ditavalref> within a branch that already uses <ditavalref>
	7.5.7.8 Example: <ditavalref> error conditions

	7.6 Sorting
	7.7 Determining effective attribute values

	8 Configuration and specialization
	8.1 Overview of DITA extension facilities
	8.2 Document-type configuration
	8.2.1 Overview of document-type shells
	8.2.2 Rules for document-type shells
	8.2.3 Equivalence of document-type shells
	8.2.4 Conformance of document-type shells

	8.3 Specialization
	8.3.1 Overview of specialization
	8.3.2 Modularization
	8.3.3 Vocabulary modules
	8.3.4 Specialization rules for element types
	8.3.5 Specialization rules for attributes
	8.3.6 The @class attribute rules and syntax
	8.3.7 The @specializations attribute rules and syntax
	8.3.8 Specializing to include non-DITA content
	8.3.9 Sharing elements across specializations

	8.4 Generalization
	8.4.1 Overview of generalization
	8.4.2 Element generalization
	8.4.3 Processor expectations when generalizing elements
	8.4.4 Attribute generalization
	8.4.5 Generalization with cross-specialization dependencies

	8.5 Constraints
	8.5.1 Overview of constraints
	8.5.2 Constraint rules
	8.5.3 Constraints, processing, and interoperability

	8.6 Expansion modules
	8.6.1 Overview of expansion modules
	8.6.2 Expansion module rules

	9 Element reference
	9.1 DITA elements, A to Z
	9.2 DITA attributes, A to Z
	9.3 Topic elements
	9.3.1 Basic topic elements
	9.3.1.1 <abstract>
	9.3.1.2 <body>
	9.3.1.3 <bodydiv>
	9.3.1.4 <dita>
	9.3.1.5 <prolog>
	9.3.1.6 <related-links>
	9.3.1.7 <shortdesc>
	9.3.1.8 <title>
	9.3.1.9 <titlealt>
	9.3.1.10 <topic>

	9.3.2 Body elements
	9.3.2.1 <alt>
	9.3.2.2 <cite>
	9.3.2.3 <dd>
	9.3.2.4 <ddhd>
	9.3.2.5 <desc>
	9.3.2.6 <div>
	9.3.2.7 <dl>
	9.3.2.8 <dlentry>
	9.3.2.9 <dlhead>
	9.3.2.10 <draft-comment>
	9.3.2.11 <dt>
	9.3.2.12 <dthd>
	9.3.2.13 <example>
	9.3.2.14 <fallback>
	9.3.2.15 <fig>
	9.3.2.16 <figgroup>
	9.3.2.17 <fn>
	9.3.2.18 <image>
	9.3.2.19 <include>
	9.3.2.20 <keyword>
	9.3.2.21
	9.3.2.22 <lines>
	9.3.2.23 <longdescref>
	9.3.2.24 <lq>
	9.3.2.25 <note>
	9.3.2.26 <object>
	9.3.2.27
	9.3.2.28 <p>
	9.3.2.29 <param>
	9.3.2.30 <ph>
	9.3.2.31 <pre>
	9.3.2.32 <q>
	9.3.2.33 <section>
	9.3.2.34 <sl>
	9.3.2.35 <sli>
	9.3.2.36 <term>
	9.3.2.37 <text>
	9.3.2.38 <tm>
	9.3.2.39
	9.3.2.40 <xref>

	9.3.3 Multimedia elements
	9.3.3.1 <audio>
	9.3.3.2 <media-source>
	9.3.3.3 <media-track>
	9.3.3.4 <video>
	9.3.3.5 <video-poster>

	9.3.4 Indexing elements
	9.3.4.1 <index-see>
	9.3.4.2 <index-see-also>
	9.3.4.3 <indexterm>

	9.3.5 Related links elements
	9.3.5.1 <link>
	9.3.5.2 <linkinfo>
	9.3.5.3 <linklist>
	9.3.5.4 <linkpool>
	9.3.5.5 <linktext>

	9.3.6 Table elements
	9.3.6.1 <colspec>
	9.3.6.2 <entry>
	9.3.6.3 <row>
	9.3.6.4 <simpletable>
	9.3.6.5 <stentry>
	9.3.6.6 <sthead>
	9.3.6.7 <strow>
	9.3.6.8 <table>
	9.3.6.9 <tbody>
	9.3.6.10 <tgroup>
	9.3.6.11 <thead>

	9.4 Map elements
	9.4.1 Basic map elements
	9.4.1.1 <keytext>
	9.4.1.2 <map>
	9.4.1.3 <navref>
	9.4.1.4 <relcell>
	9.4.1.5 <relcolspec>
	9.4.1.6 <relheader>
	9.4.1.7 <relrow>
	9.4.1.8 <reltable>
	9.4.1.9 <topicref>
	9.4.1.10 <topicmeta>
	9.4.1.11 <ux-window>

	9.4.2 Subject scheme elements
	9.4.2.1 <attributedef>
	9.4.2.2 <defaultSubject>
	9.4.2.3 <elementdef>
	9.4.2.4 <enumerationdef>
	9.4.2.5 <schemeref>
	9.4.2.6 <subjectdef>
	9.4.2.7 <subjectHead>
	9.4.2.8 <subjectHeadMeta>
	9.4.2.9 <subjectScheme>

	9.5 Metadata elements
	9.5.1 Descriptive metadata
	9.5.1.1 <audience>
	9.5.1.2 <author>
	9.5.1.3 <category>
	9.5.1.4 <keywords>
	9.5.1.5 <othermeta>
	9.5.1.6 <prodinfo>
	9.5.1.7 <publisher>
	9.5.1.8 <prodname>
	9.5.1.9 <prognum>

	9.5.2 Lifecycle management metadata
	9.5.2.1 <copyrholder>
	9.5.2.2 <copyright>
	9.5.2.3 <copyryear>
	9.5.2.4 <created>
	9.5.2.5 <critdates>
	9.5.2.6 <metadata>
	9.5.2.7 <permissions>
	9.5.2.8 <resourceid>
	9.5.2.9 <revised>
	9.5.2.10 <source>

	9.5.3 Product information metadata
	9.5.3.1 <brand>
	9.5.3.2 <component>
	9.5.3.3 <featnum>
	9.5.3.4 <platform>
	9.5.3.5 <series>
	9.5.3.6 <vrmlist>
	9.5.3.7 <vrm>

	9.6 Specialization elements
	9.6.1 <data>
	9.6.2 <foreign>
	9.6.3 <no-topic-nesting>

	9.7 Domain elements
	9.7.1 Alternative-titles domain elements
	9.7.1.1 <linktitle>
	9.7.1.2 <navtitle>
	9.7.1.3 <searchtitle>
	9.7.1.4 <subtitle>
	9.7.1.5 <titlehint>

	9.7.2 DITAVAL-reference domain element
	9.7.2.1 <ditavalref>
	9.7.2.2 <ditavalmeta>
	9.7.2.3 <dvrResourcePrefix>
	9.7.2.4 <dvrResourceSuffix>
	9.7.2.5 <dvrKeyscopePrefix>
	9.7.2.6 <dvrKeyscopeSuffix>

	9.7.3 Emphasis domain elements
	9.7.3.1
	9.7.3.2

	9.7.4 Hazard-statement domain elements
	9.7.4.1 <consequence>
	9.7.4.2 <hazardstatement>
	9.7.4.3 <hazardsymbol>
	9.7.4.4 <howtoavoid>
	9.7.4.5 <messagepanel>
	9.7.4.6 <typeofhazard>

	9.7.5 Highlighting domain elements
	9.7.5.1
	9.7.5.2 <i>
	9.7.5.3 <line-through>
	9.7.5.4 <overline>
	9.7.5.5 <sub>
	9.7.5.6 <sup>
	9.7.5.7 <tt>
	9.7.5.8 <u>

	9.7.6 Mapgroup domain elements
	9.7.6.1 <keydef>
	9.7.6.2 <mapref>
	9.7.6.3 <mapresources>
	9.7.6.4 <topicgroup>
	9.7.6.5 <topichead>

	9.7.7 Utilities domain elements
	9.7.7.1 <area>
	9.7.7.2 <coords>
	9.7.7.3 <imagemap>
	9.7.7.4 <shape>
	9.7.7.5 <sort-as>

	9.8 Other elements
	9.8.1 Legacy conversion elements
	9.8.1.1 <required-cleanup>

	9.8.2 DITAVAL elements
	9.8.2.1 <alt-text>
	9.8.2.2 <endflag>
	9.8.2.3 <prop>
	9.8.2.4 <revprop>
	9.8.2.5 <startflag>
	9.8.2.6 <style-conflict>
	9.8.2.7 <val>

	9.9 Attributes
	9.9.1 Attribute groups
	9.9.2 Universal attribute group
	9.9.3 Common attributes

	10 Conformance
	A Acknowledgments
	B Aggregated RFC-2119 statements
	C Coding practices for DITA grammar files
	C.1 File naming conventions
	C.2 DTD coding requirements
	C.2.1 DTD: Use of entities
	C.2.2 DTD: Coding requirements for document-type shells
	C.2.3 DTD: Coding requirements for structural and element-domain modules
	C.2.4 DTD: Coding requirements for structural modules
	C.2.5 DTD: Coding requirements for element-domain modules
	C.2.6 DTD: Coding requirements for attribute-domain modules
	C.2.7 DTD: Coding requirements for element-configuration modules

	C.3 RELAX NG coding requirements
	C.3.1 RELAX NG: Overview of coding requirements
	C.3.2 RELAX NG: Coding requirements for document-type shells
	C.3.3 RELAX NG: Coding requirements for structural and element-domain modules
	C.3.4 RELAX NG: Coding requirements for structural modules
	C.3.5 RELAX NG: Coding requirements for element-domain modules
	C.3.6 RELAX NG: Coding requirements for attribute-domain modules
	C.3.7 RELAX NG: Coding requirements for element-configuration modules

	D Constraint modules
	D.1 Examples: Constraints implemented using DTDs
	D.1.1 Example: Restrict the content model for the <topic> element using DTD
	D.1.2 Example: Constrain attributes for the <section> element using DTD
	D.1.3 Example: Constrain a domain module using DTD
	D.1.4 Example: Replace a base element with the domain extensions using DTD
	D.1.5 Example: Apply multiple constraints to a single document-type shell using DTD

	D.2 Examples: Constraints implemented using RNG
	D.2.1 Example: Restrict the content model for the <topic> element using RNG
	D.2.2 Example: Constrain attributes for the <section> element using RNG
	D.2.3 Example: Constrain a domain module using RNG
	D.2.4 Example: Replace a base element with the domain extensions using RNG
	D.2.5 Example: Apply multiple constraints to a single document-type shell using RNG

	E Expansion modules
	E.1 Examples: Expansion implemented using DTDs
	E.1.1 Example: Adding an element to the <section> element using DTDs
	E.1.2 Example: Adding an attribute to certain table elements using DTDs
	E.1.3 Example: Adding an existing domain attribute to certain elements using DTDs
	E.1.4 Example: Aggregating constraint and expansion modules using DTDs

	E.2 Examples: Expansion implemented using RNG
	E.2.1 Example: Adding an element to the <section> element using RNG
	E.2.2 Example: Adding an attribute to certain table elements using RNG
	E.2.3 Example: Adding an existing domain attribute to certain elements using RNG
	E.2.4 Example: Aggregating constraint and expansion modules using RNG

	F Element-by-element recommendations for translators
	G Formatting expectations
	H Migrating to DITA 2.0
	H.1 Changes from DITA 1.3 to DITA 2.0
	H.2 Information about migrating to DITA 2.0

	I OASIS grammar files
	I.1 File names in the base DITA edition
	I.2 Globally-unique identifiers in the base DITA edition
	I.3 Domains provided in the base DITA edition
	I.4 Document-type shells provided in the base DITA edition

	J Processing interoperability considerations
	K Revision history
	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	X

