X.X Proposal for a “Parallel Step” representation
At the time of writing, CACAO “Parallel Steps” are meta-steps that can reference a given set of Workflow steps and, consequently, indicate the possibility for an operator/application to run those steps in parallel.	Comment by Thomson Allan: I think as a compromise we might want to put a meta-data property on playbooks that identifies a playbook defines parallel steps. Therefore an author can specify upfront that their playbook defines parallel steps and if a consumer is unable or unwilling to support parallel steps then that playbook can be rejected as not supported.

This helps orgs that wish to support parallelization while others that do not can reject in an interoperable manner.

It also helps provides more meta-data to check on playbooks sophistication which will help implementations.

[bookmark: _Hlk56183502]"step--46c1d6e1-874e-4588-b2a4-16d31634372c": {
 "type": "parallel",
 "next_steps": [
 "step--9afbcb12-8f82-4d35-ba70-f755b83725e1",
 "step--b4161d26-1c8d-4f19-b82f-aad144de4828"
],
 "on_completion": "step--44924d92-58c9-4fcc-9435-6fb651dbbddd"
},
Alternative
The same suggestion might also be represented by “labeling” a given Workflow step with an extra attribute that implies the possibility of parallelizing the execution of that step with the one the follows.
"step--46c1d6e1-874e-4588-b2a4-16d31634372c": {
 "type": "single",
 "parallelizable": true,
 …
 "on_completion": "step--44924d92-58c9-4fcc-9435-6fb651dbbddd"
},
Worflow Step Common Properties

	Property Name
	Rq
	Data Type
	Details

	…
	
	…
	…

	parallelizable	Comment by Thomson Allan: Without associating a group of parallel tasks there is no way to define parallel tasks therefore there is no way to know which tasks should run in parallel together or not.
	
	boolean
	If true, the execution of the next step referenced either by the on_success or the on_completion attributes MAY start without waiting the conclusion of the step.

The parallel execution applies until, and including, the first step that does not carry attribute “parallelizable” (or the same attribute is false).
Motivation
Assuming the absence of scenarios in which the parallel execution of two or more Workflow steps is mandatory, inducing the author of a Playbook to think sequentially and, thus, apply the parallelization label at a later stage might improve overall quality of Playbooks and readability. This approach might also avoid potentially incongruous situations in which the steps referenced within a parallel step carry references (via the “on_success” or the “on_completion” attributes) to steps that follow the parallel step itself. Such scenarios could be identified in a Playbook validation phase but will be much rarer (if not impossible) using the alternative representation.
Finally, it is worth noting that the Parallel step seems to be the only workflow step in CACAO that does not bring any key information needed for the correct execution of a Playbook (given the assumption above). This consideration raises a question related to the objectives of CACAO (e.g., what information is important to represent?). Given the heterogeneity of infrastructures in which a CACAO Playbook could be deployed and the numerous conditions to be considered for its actual execution, it might be safer to equip Playbooks only with necessary informative steps rather than including optimizations.	Comment by Thomson Allan: See comment above about providing a metadata property to define use of parallelism in a playbook (using the current proposal) so that consuming systems can reject if need be.
Example
Current Version
 "workflow": {
 "workflow-step-uuid01": {
 "type": "start",
 "name": "Start Traffic Flow Redirect Playbook Example",
 "on_completion": "workflow-step-uuid02"
 },
 "workflow-step-uuid02": {
 "type": "if-condition",
 "name": "Redirect Traffic Flow",
 "description": "In this step the traffic flow will be redirected if it matches a particular domain",
 "condition": "$$domain == www.test.com",
 "on_true": ["workflow-step-uuid03"],
 "on_false": ["workflow-end"]
 },
 "workflow-step-uuid03": {
 "type": "parallel",
 "name": "Log and Copy",
 "description": "In this step the traffic flow will be logged and redirected",
 "next_steps": [
 "workflow-step-uuid03.1",
 "workflow-step-uuid03.2"
]
 "on_completion": "workflow-uuid4",
 "on_failure": "workflow-end"
 },
 "workflow-step-uuid03.1": {
 "type": "single",
 "name": "Log the event",
 "description": "This is a step the traffic flow will be logged",
 "timeout": "$$method_timeout",
 "step_name": "logTrafficFlows",
 "commands" : [
		{
			"type": "http-api",
			"command" : "logTrafficFlows"
		}
],
 "in_args" : ["$$domain", “5mins”],
 "out_args" : null,
 "target" : {
		"type": "http-api",
		"http_url" : "https://trafficcontroller/logTrafficFlows"
		"http_auth": // username/password
 },
 "on_completion": $$RETURN_CALLER,
 "on_failure": "workflow-end"
 },
 "workflow-step-uuid03.2": {
 "type": "single",
 "name": "Log the event",
 "description": "This is a step the traffic flow will be copied to a new destination",
 "timeout": "$$method_timeout",
 "step_name": "copyTrafficFlows",
 "commands" : [
		{
			"type": "http-api",
			"command" : "copyTrafficFlows"
		}
],
 "in_args" : ["$$domain", “$$copy_to_ip”, “5mins”],
 "out_args" : null,
 "target" : {
		"type": "http-api",
		"http_url" : "https://trafficcontroller/copyTrafficFlows"
		"http_auth": // username/password
 },
 "on_completion": $$RETURN_CALLER,
 "on_failure": "workflow-end"
 },
 "workflow-end": {
 "type": "single",
 "name": "End",
 "description": "This is a step to end the workflow",
 "action_id": "action--end"
 }

Alternative
 "workflow": {
 "workflow-step-uuid01": {
 "type": "start",
 "name": "Start Traffic Flow Redirect Playbook Example",
 "on_completion": "workflow-step-uuid02"
 },
 "workflow-step-uuid02": {
 "type": "if-condition",
 "name": "Redirect Traffic Flow",
 "description": "In this step the traffic flow will be redirected if it matches a particular domain",
 "condition": "$$domain == www.test.com",
 "on_true": ["workflow-step-uuid03.1"],
 "on_false": ["workflow-end"]
 },
 "workflow-step-uuid03.1": {
 "type": "single",
 "name": "Log the event",
 "description": "This is a step the traffic flow will be logged",
 "parallelizable": true,		Comment by Thomson Allan: By introducing this property, the program execution must now scan all other steps searching for parallelizable true. However, what if there are multiple phases of parallelizable true? Without some form of grouping, there is no way to know whether a step is to be run now with this current parallelizable step or a future one. Secondly, this breaks flow of execution of the program because you could deliberately or accidentally mark something parallelizable much later in a program and the program execution would take that to mean run it now. In general without a label to group parallel steps together this will break program execution.
 "timeout": "$$method_timeout",
 "step_name": "logTrafficFlows",
 "commands" : [
		{
			"type": "http-api",
			"command" : "logTrafficFlows"
		}
],
 "in_args" : ["$$domain", “5mins”],
 "out_args" : null,
 "target" : {
		"type": "http-api",
		"http_url" : "https://trafficcontroller/logTrafficFlows"
		"http_auth": // username/password
 },
 "on_completion": "workflow-step-uuid03.2",	Comment by Thomson Allan: What happens if an implementation did run step 3.1 and step 3.2 in parallel. But when it gets to step 3.1 complete this says it should run 3.2 again. How would that be deterministically resolved. Cause its possible that step 3.1 may want to run 3.2 deliberately on completion but it may not. Currently there is no way to determine the difference.
 "on_failure": "workflow-end"
 },
 "workflow-step-uuid03.2": {
 "type": "single",
 "name": "Log the event",
 "description": "This is a step the traffic flow will be copied to a new destination",
 "timeout": "$$method_timeout",
 "step_name": "copyTrafficFlows",
 "commands" : [
		{
			"type": "http-api",
			"command" : "copyTrafficFlows"
		}
],
 "in_args" : ["$$domain", “$$copy_to_ip”, “5mins”],
 "out_args" : null,
 "target" : {
		"type": "http-api",
		"http_url" : "https://trafficcontroller/copyTrafficFlows"
		"http_auth": // username/password
 },
 "on_completion": "workflow-uuid4",	Comment by Thomson Allan: Just fyi – this step is missing in the example
 "on_failure": "workflow-end"
 },
 "workflow-end": {
 "type": "single",
 "name": "End",
 "description": "This is a step to end the workflow",
 "action_id": "action--end"
 }

